blob: 778c5c39b03d76e8a68f0e91d7dbacc725ec3c06 [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/f32-raddextexp/avx512f-p5-scalef.c.in
// Generator: tools/xngen
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/intrinsics-polyfill.h>
#include <xnnpack/raddextexp.h>
void xnn_f32_raddextexp_ukernel__avx512f_p5_scalef_x192_acc2(
size_t elements,
const float* x,
float* sum)
{
assert(elements % sizeof(float) == 0);
const __m512 vlog2e = _mm512_set1_ps(0x1.715476p+0f);
const __m512 vminus_ln2_hi = _mm512_set1_ps(-0x1.62E43p-1f);
const __m512 vminus_ln2_lo = _mm512_set1_ps(0x1.05C61p-29f);
const __m512 vc0 = _mm512_set1_ps(1.0f);
const __m512 vc1 = _mm512_set1_ps(0x1.FFFFF6p-1f);
const __m512 vc2 = _mm512_set1_ps(0x1.FFFDC6p-2f);
const __m512 vc3 = _mm512_set1_ps(0x1.555A80p-3f);
const __m512 vc4 = _mm512_set1_ps(0x1.573A1Ap-5f);
const __m512 vc5 = _mm512_set1_ps(0x1.0F9F9Cp-7f);
const __m512 vminus_inf = _mm512_set1_ps(-INFINITY);
__m512 vaccv0 = _mm512_setzero_ps();
__m512 vaccv1 = _mm512_setzero_ps();
__m512 vacce0 = vminus_inf;
__m512 vacce1 = vminus_inf;
for (; elements >= 192 * sizeof(float); elements -= 192 * sizeof(float)) {
// Load 192 (12x16) inputs at a time.
const __m512 vx0 = _mm512_loadu_ps(x);
const __m512 vx1 = _mm512_loadu_ps(x + 16);
const __m512 vx2 = _mm512_loadu_ps(x + 32);
const __m512 vx3 = _mm512_loadu_ps(x + 48);
const __m512 vx4 = _mm512_loadu_ps(x + 64);
const __m512 vx5 = _mm512_loadu_ps(x + 80);
const __m512 vx6 = _mm512_loadu_ps(x + 96);
const __m512 vx7 = _mm512_loadu_ps(x + 112);
const __m512 vx8 = _mm512_loadu_ps(x + 128);
const __m512 vx9 = _mm512_loadu_ps(x + 144);
const __m512 vx10 = _mm512_loadu_ps(x + 160);
const __m512 vx11 = _mm512_loadu_ps(x + 176);
x += 192;
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn0 = _mm512_roundscale_ps(_mm512_mul_ps(vx0, vlog2e), 0);
const __m512 vn1 = _mm512_roundscale_ps(_mm512_mul_ps(vx1, vlog2e), 0);
const __m512 vn2 = _mm512_roundscale_ps(_mm512_mul_ps(vx2, vlog2e), 0);
const __m512 vn3 = _mm512_roundscale_ps(_mm512_mul_ps(vx3, vlog2e), 0);
const __m512 vn4 = _mm512_roundscale_ps(_mm512_mul_ps(vx4, vlog2e), 0);
const __m512 vn5 = _mm512_roundscale_ps(_mm512_mul_ps(vx5, vlog2e), 0);
const __m512 vn6 = _mm512_roundscale_ps(_mm512_mul_ps(vx6, vlog2e), 0);
const __m512 vn7 = _mm512_roundscale_ps(_mm512_mul_ps(vx7, vlog2e), 0);
const __m512 vn8 = _mm512_roundscale_ps(_mm512_mul_ps(vx8, vlog2e), 0);
const __m512 vn9 = _mm512_roundscale_ps(_mm512_mul_ps(vx9, vlog2e), 0);
const __m512 vn10 = _mm512_roundscale_ps(_mm512_mul_ps(vx10, vlog2e), 0);
const __m512 vn11 = _mm512_roundscale_ps(_mm512_mul_ps(vx11, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_hi, vx0);
__m512 vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_hi, vx1);
__m512 vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_hi, vx2);
__m512 vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_hi, vx3);
__m512 vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_hi, vx4);
__m512 vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_hi, vx5);
__m512 vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_hi, vx6);
__m512 vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_hi, vx7);
__m512 vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_hi, vx8);
__m512 vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_hi, vx9);
__m512 vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_hi, vx10);
__m512 vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_hi, vx11);
vt0 = _mm512_fmadd_ps(vn0, vminus_ln2_lo, vt0);
vt1 = _mm512_fmadd_ps(vn1, vminus_ln2_lo, vt1);
vt2 = _mm512_fmadd_ps(vn2, vminus_ln2_lo, vt2);
vt3 = _mm512_fmadd_ps(vn3, vminus_ln2_lo, vt3);
vt4 = _mm512_fmadd_ps(vn4, vminus_ln2_lo, vt4);
vt5 = _mm512_fmadd_ps(vn5, vminus_ln2_lo, vt5);
vt6 = _mm512_fmadd_ps(vn6, vminus_ln2_lo, vt6);
vt7 = _mm512_fmadd_ps(vn7, vminus_ln2_lo, vt7);
vt8 = _mm512_fmadd_ps(vn8, vminus_ln2_lo, vt8);
vt9 = _mm512_fmadd_ps(vn9, vminus_ln2_lo, vt9);
vt10 = _mm512_fmadd_ps(vn10, vminus_ln2_lo, vt10);
vt11 = _mm512_fmadd_ps(vn11, vminus_ln2_lo, vt11);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp0 = _mm512_fmadd_ps(vc5, vt0, vc4);
__m512 vp1 = _mm512_fmadd_ps(vc5, vt1, vc4);
__m512 vp2 = _mm512_fmadd_ps(vc5, vt2, vc4);
__m512 vp3 = _mm512_fmadd_ps(vc5, vt3, vc4);
__m512 vp4 = _mm512_fmadd_ps(vc5, vt4, vc4);
__m512 vp5 = _mm512_fmadd_ps(vc5, vt5, vc4);
__m512 vp6 = _mm512_fmadd_ps(vc5, vt6, vc4);
__m512 vp7 = _mm512_fmadd_ps(vc5, vt7, vc4);
__m512 vp8 = _mm512_fmadd_ps(vc5, vt8, vc4);
__m512 vp9 = _mm512_fmadd_ps(vc5, vt9, vc4);
__m512 vp10 = _mm512_fmadd_ps(vc5, vt10, vc4);
__m512 vp11 = _mm512_fmadd_ps(vc5, vt11, vc4);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc3);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc3);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc3);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc3);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc3);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc3);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc3);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc3);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc3);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc3);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc3);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc3);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc2);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc2);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc2);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc2);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc2);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc2);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc2);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc2);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc2);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc2);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc2);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc2);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc1);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc1);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc1);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc1);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc1);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc1);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc1);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc1);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc1);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc1);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc1);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc1);
vp0 = _mm512_fmadd_ps(vp0, vt0, vc0);
vp1 = _mm512_fmadd_ps(vp1, vt1, vc0);
vp2 = _mm512_fmadd_ps(vp2, vt2, vc0);
vp3 = _mm512_fmadd_ps(vp3, vt3, vc0);
vp4 = _mm512_fmadd_ps(vp4, vt4, vc0);
vp5 = _mm512_fmadd_ps(vp5, vt5, vc0);
vp6 = _mm512_fmadd_ps(vp6, vt6, vc0);
vp7 = _mm512_fmadd_ps(vp7, vt7, vc0);
vp8 = _mm512_fmadd_ps(vp8, vt8, vc0);
vp9 = _mm512_fmadd_ps(vp9, vt9, vc0);
vp10 = _mm512_fmadd_ps(vp10, vt10, vc0);
vp11 = _mm512_fmadd_ps(vp11, vt11, vc0);
// Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation where
// - vnX is "exponent"
// - vpX is "mantissa"
//
// exp2(ae) * av + exp2(be) * bv =
// = exp2(max(ae, be)) * exp2(ae - max(ae, be)) * av + exp2(max(ae, be)) * exp2(be - max(ae, be)) * bv
// = exp2(max_e) * (exp2(ae - max_e) * av + exp2(be - max_e) * bv)
// = exp2(max_e) * (exp2(delta_ae) * av + exp2(delta_be) * bv)
//
// For computational efficiency we add three "extended" floating-point numbers at a time.
__m512 vmax_e0 = _mm512_max_ps(vacce0, vn0);
__m512 vmax_e1 = _mm512_max_ps(vacce1, vn1);
vmax_e0 = _mm512_max_ps(vmax_e0, vn2);
vmax_e1 = _mm512_max_ps(vmax_e1, vn3);
vmax_e0 = _mm512_max_ps(vmax_e0, vn4);
vmax_e1 = _mm512_max_ps(vmax_e1, vn5);
vmax_e0 = _mm512_max_ps(vmax_e0, vn6);
vmax_e1 = _mm512_max_ps(vmax_e1, vn7);
vmax_e0 = _mm512_max_ps(vmax_e0, vn8);
vmax_e1 = _mm512_max_ps(vmax_e1, vn9);
vmax_e0 = _mm512_max_ps(vmax_e0, vn10);
vmax_e1 = _mm512_max_ps(vmax_e1, vn11);
const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_e0);
const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_e1);
const __m512 vdelta_e0 = _mm512_sub_ps(vn0, vmax_e0);
const __m512 vdelta_e1 = _mm512_sub_ps(vn1, vmax_e1);
const __m512 vdelta_e2 = _mm512_sub_ps(vn2, vmax_e0);
const __m512 vdelta_e3 = _mm512_sub_ps(vn3, vmax_e1);
const __m512 vdelta_e4 = _mm512_sub_ps(vn4, vmax_e0);
const __m512 vdelta_e5 = _mm512_sub_ps(vn5, vmax_e1);
const __m512 vdelta_e6 = _mm512_sub_ps(vn6, vmax_e0);
const __m512 vdelta_e7 = _mm512_sub_ps(vn7, vmax_e1);
const __m512 vdelta_e8 = _mm512_sub_ps(vn8, vmax_e0);
const __m512 vdelta_e9 = _mm512_sub_ps(vn9, vmax_e1);
const __m512 vdelta_e10 = _mm512_sub_ps(vn10, vmax_e0);
const __m512 vdelta_e11 = _mm512_sub_ps(vn11, vmax_e1);
// Update accumulated "mantissa" and "exponent" values
vaccv0 = _mm512_scalef_ps(vaccv0, vdelta_acce0);
vaccv1 = _mm512_scalef_ps(vaccv1, vdelta_acce1);
vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp0, vdelta_e0));
vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp1, vdelta_e1));
vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp2, vdelta_e2));
vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp3, vdelta_e3));
vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp4, vdelta_e4));
vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp5, vdelta_e5));
vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp6, vdelta_e6));
vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp7, vdelta_e7));
vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp8, vdelta_e8));
vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp9, vdelta_e9));
vaccv0 = _mm512_add_ps(vaccv0, _mm512_scalef_ps(vp10, vdelta_e10));
vaccv1 = _mm512_add_ps(vaccv1, _mm512_scalef_ps(vp11, vdelta_e11));
vacce0 = vmax_e0;
vacce1 = vmax_e1;
}
// Reduce partial sums of "extended" floating-point numbers into a single "extended" SIMD vector of sums.
const __m512 vmax_acce01 = _mm512_max_ps(vacce0, vacce1);
const __m512 vdelta_acce0 = _mm512_sub_ps(vacce0, vmax_acce01);
const __m512 vdelta_acce1 = _mm512_sub_ps(vacce1, vmax_acce01);
__m512 vaccv = _mm512_scalef_ps(vaccv0, vdelta_acce0);
vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vaccv1, vdelta_acce1));
__m512 vacce = vmax_acce01;
for (; elements >= 16 * sizeof(float); elements -= 16 * sizeof(float)) {
// Load 16 inputs at a time.
const __m512 vx = _mm512_loadu_ps(x);
x += 16;
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
vp = _mm512_fmadd_ps(vp, vt, vc3);
vp = _mm512_fmadd_ps(vp, vt, vc2);
vp = _mm512_fmadd_ps(vp, vt, vc1);
vp = _mm512_fmadd_ps(vp, vt, vc0);
// Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
const __m512 vmax_e = _mm512_max_ps(vacce, vn);
const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
vaccv = _mm512_scalef_ps(vaccv, vdelta_acce);
vaccv = _mm512_add_ps(vaccv, _mm512_scalef_ps(vp, vdelta_e));
vacce = vmax_e;
}
if XNN_UNLIKELY(elements != 0) {
// Prepare mask for valid 32-bit elements (depends on elements).
elements >>= 2 /* log2(sizeof(float)) */;
const __mmask16 vmask = _cvtu32_mask16((uint16_t) ((uint32_t) (UINT32_C(1) << elements) - UINT32_C(1)));
// Load up to 15 inputs at a time.
const __m512 vx = _mm512_maskz_loadu_ps(vmask, x);
// Compute reduced argument elements := round(x / log(2)).
const __m512 vn = _mm512_roundscale_ps(_mm512_mul_ps(vx, vlog2e), 0);
// Compute reduced argument t := x - elements * log(2).
// Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
__m512 vt = _mm512_fmadd_ps(vn, vminus_ln2_hi, vx);
vt = _mm512_fmadd_ps(vn, vminus_ln2_lo, vt);
// Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
__m512 vp = _mm512_fmadd_ps(vc5, vt, vc4);
vp = _mm512_fmadd_ps(vp, vt, vc3);
vp = _mm512_fmadd_ps(vp, vt, vc2);
vp = _mm512_fmadd_ps(vp, vt, vc1);
vp = _mm512_fmadd_ps(vp, vt, vc0);
// Accumulate "extended" floating-point numbers in ("mantissa", "exponent") representation.
const __m512 vmax_e = _mm512_mask_max_ps(vacce, vmask, vacce, vn);
const __m512 vdelta_acce = _mm512_sub_ps(vacce, vmax_e);
const __m512 vdelta_e = _mm512_sub_ps(vn, vmax_e);
vaccv = _mm512_mask_scalef_ps(vaccv, vmask, vaccv, vdelta_acce);
vaccv = _mm512_mask_add_ps(vaccv, vmask, vaccv, _mm512_maskz_scalef_ps(vmask, vp, vdelta_e));
vacce = vmax_e;
}
// Reduce partial sums of "extended" floating-point numbers into a single "extended" floating-point sum.
const float vmax_acce = _mm512_reduce_max_ps(vacce);
const __m512 vdelta_acce = _mm512_sub_ps(vacce, _mm512_set1_ps(vmax_acce));
sum[0] = _mm512_reduce_add_ps(_mm512_scalef_ps(vaccv, vdelta_acce));
sum[1] = vmax_acce;
_mm256_zeroupper();
}