blob: 3b3b0917cf581cc8bba8210637b9477a2fae5c4e [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/indirection.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/operator.h>
#include <xnnpack/pack.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
static inline size_t compute_output_dimension(
size_t input_dimension,
size_t output_padding_dimension,
size_t adjustment_dimension,
size_t kernel_dimension,
size_t dilation_dimension,
size_t stride_dimension)
{
const size_t effective_kernel_dimension = (kernel_dimension - 1) * dilation_dimension + 1;
return doz(
stride_dimension * (input_dimension - 1) + adjustment_dimension + effective_kernel_dimension,
output_padding_dimension);
}
enum xnn_status xnn_create_deconvolution2d_nhwc_q8(
uint32_t output_padding_top,
uint32_t output_padding_right,
uint32_t output_padding_bottom,
uint32_t output_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t stride_height,
uint32_t stride_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
uint8_t input_zero_point,
float input_scale,
uint8_t kernel_zero_point,
float kernel_scale,
const uint8_t* kernel,
const int32_t* bias,
uint8_t output_zero_point,
float output_scale,
uint8_t output_min,
uint8_t output_max,
uint32_t flags,
xnn_operator_t* deconvolution_op_out)
{
xnn_operator_t deconvolution_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Deconvolution operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
goto error;
}
if (stride_width == 0 || stride_height == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 "x%" PRIu32 " stride: stride dimensions must be non-zero",
stride_width, stride_height);
goto error;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
goto error;
}
if (groups == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
goto error;
}
if (group_input_channels == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %zu input channels per group: "
"number of channels must be non-zero",
group_input_channels);
goto error;
}
if (group_output_channels == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %zu output channels per group: "
"number of channels must be non-zero",
group_output_channels);
goto error;
}
const size_t input_channels = groups * group_input_channels;
if (input_pixel_stride < input_channels) {
xnn_log_error(
"failed to create Deconvolution operator with input pixel stride of %zu: "
"stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
input_pixel_stride, groups, group_input_channels);
goto error;
}
const size_t output_channels = groups * group_output_channels;
if (output_pixel_stride < output_channels) {
xnn_log_error(
"failed to create Deconvolution operator with output pixel stride of %zu: "
"stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
output_pixel_stride, groups, group_output_channels);
goto error;
}
if (input_scale <= 0.0f || !isnormal(input_scale)) {
xnn_log_error(
"failed to create Deconvolution operator with %.7g input scale: scale must be finite, normalized, and positive",
input_scale);
goto error;
}
if (kernel_scale <= 0.0f || !isnormal(kernel_scale)) {
xnn_log_error(
"failed to create Deconvolution operator with %.7g kernel scale: scale must be finite, normalized, and positive",
kernel_scale);
goto error;
}
if (output_scale <= 0.0f || !isnormal(output_scale)) {
xnn_log_error(
"failed to create Deconvolution operator with %.7g output scale: scale must be finite, normalized, and positive",
output_scale);
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Deconvolution operator with [%" PRIu8 ", %" PRIu8 "] output range: "
"range min must be below range max",
output_min, output_max);
goto error;
}
status = xnn_status_unsupported_parameter;
const float deconvolution_scale = input_scale * kernel_scale / output_scale;
if (deconvolution_scale >= 1.0f) {
xnn_log_error(
"failed to create Deconvolution operator with %.7g input scale, %.7g kernel scale, and %.7g output scale: "
"Deconvolution operator scale %.7g is greater or equal to 1.0",
input_scale, kernel_scale, output_scale, deconvolution_scale);
goto error;
}
status = xnn_status_out_of_memory;
deconvolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (deconvolution_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Deconvolution operator descriptor", sizeof(struct xnn_operator));
goto error;
}
const uint32_t mr = xnn_params.q8.gemm.mr;
const uint32_t nr = xnn_params.q8.gemm.nr;
const uint32_t kr = UINT32_C(1) << xnn_params.q8.gemm.log2_kr;
const xnn_igemm_ukernel_function ukernel_function = xnn_params.q8.gemm.igemm;
const uint32_t n_stride = round_up(group_output_channels, nr);
const uint32_t k_stride = round_up_po2(group_input_channels, kr);
const uint32_t kernel_size = kernel_height * kernel_width;
enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_igemm;
size_t packed_group_weights_size = (sizeof(uint8_t) * kernel_size * k_stride + sizeof(int32_t)) * n_stride;
if (max(stride_height, stride_width) > 1 && max(dilation_height, dilation_width) == 1 && stride_width <= kernel_width && stride_height <= kernel_height) {
ukernel_type = xnn_ukernel_type_subconv2d;
const size_t subkernels = stride_height * stride_width;
packed_group_weights_size = n_stride *
(sizeof(uint8_t) * kernel_size * k_stride + sizeof(int32_t) * subkernels);
const size_t subconvolution_buffer_size = sizeof(struct subconvolution_params) * subkernels;
deconvolution_op->subconvolution_buffer = xnn_allocate_zero_simd_memory(subconvolution_buffer_size);
if (deconvolution_op->subconvolution_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for subconvolution buffer", subconvolution_buffer_size);
goto error;
}
struct subconvolution_params* subconvolution_params = deconvolution_op->subconvolution_buffer;
for (size_t offset_y = 0; offset_y < stride_height; offset_y++) {
for (size_t offset_x = 0; offset_x < stride_width; offset_x++) {
const size_t subkernel_height = divide_round_up(kernel_height - offset_y, stride_height);
const size_t subkernel_width = divide_round_up(kernel_width - offset_x, stride_width);
const size_t subkernel_size = subkernel_height * subkernel_width;
subconvolution_params->indirection_x_stride = sizeof(void*) * subkernel_size;
subconvolution_params->w_stride = sizeof(int32_t) + k_stride * subkernel_size * sizeof(uint8_t);
subconvolution_params++;
}
}
}
deconvolution_op->packed_weights = xnn_allocate_simd_memory(packed_group_weights_size * groups);
if (deconvolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups);
goto error;
}
memset(deconvolution_op->packed_weights, kernel_zero_point, packed_group_weights_size * groups);
switch (ukernel_type) {
case xnn_ukernel_type_igemm:
xnn_pack_q8_conv_goki_w(
groups, group_output_channels, kernel_size, group_input_channels,
nr, kr,
input_zero_point, kernel_zero_point,
kernel, bias, deconvolution_op->packed_weights);
break;
case xnn_ukernel_type_subconv2d:
xnn_pack_q8_deconv_goki_w(
groups, group_output_channels, kernel_height, kernel_width, group_input_channels,
stride_height, stride_width,
nr, kr,
input_zero_point, kernel_zero_point,
kernel, bias, deconvolution_op->packed_weights, deconvolution_op->subconvolution_buffer);
break;
default:
XNN_UNREACHABLE;
}
size_t zero_size = sizeof(uint8_t) * k_stride + XNN_EXTRA_BYTES;
void* zero_buffer = xnn_allocate_simd_memory(zero_size);
if (zero_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size);
goto error;
}
memset(zero_buffer, input_zero_point, zero_size);
deconvolution_op->zero_buffer = zero_buffer;
deconvolution_op->padding_top = output_padding_top;
deconvolution_op->padding_right = output_padding_right;
deconvolution_op->padding_bottom = output_padding_bottom;
deconvolution_op->padding_left = output_padding_left;
deconvolution_op->kernel_height = kernel_height;
deconvolution_op->kernel_width = kernel_width;
deconvolution_op->stride_height = stride_height;
deconvolution_op->stride_width = stride_width;
deconvolution_op->dilation_height = dilation_height;
deconvolution_op->dilation_width = dilation_width;
deconvolution_op->groups = groups;
deconvolution_op->group_input_channels = group_input_channels;
deconvolution_op->group_output_channels = group_output_channels;
deconvolution_op->input_pixel_stride = input_pixel_stride;
deconvolution_op->output_pixel_stride = output_pixel_stride;
deconvolution_op->kernel_zero_point = kernel_zero_point;
deconvolution_op->q8_gemm_params =
xnn_init_q8_gemm_params(
input_zero_point, kernel_zero_point,
deconvolution_scale, output_zero_point, output_min, output_max);
deconvolution_op->type = xnn_operator_type_deconvolution_nhwc_q8;
deconvolution_op->ukernel.type = ukernel_type;
deconvolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
.default_function = ukernel_function,
.mr = mr,
.nr = nr,
.kr = kr,
};
deconvolution_op->state = xnn_run_state_invalid;
*deconvolution_op_out = deconvolution_op;
return xnn_status_success;
error:
xnn_delete_operator(deconvolution_op);
return status;
}
enum xnn_status xnn_create_deconvolution2d_nhwc_f32(
uint32_t output_padding_top,
uint32_t output_padding_right,
uint32_t output_padding_bottom,
uint32_t output_padding_left,
uint32_t kernel_height,
uint32_t kernel_width,
uint32_t stride_height,
uint32_t stride_width,
uint32_t dilation_height,
uint32_t dilation_width,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
const float* kernel,
const float* bias,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* deconvolution_op_out)
{
xnn_operator_t deconvolution_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Deconvolution operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
if (kernel_width == 0 || kernel_height == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 "x%" PRIu32 " kernel: kernel dimensions must be non-zero",
kernel_width, kernel_height);
goto error;
}
if (stride_width == 0 || stride_height == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 "x%" PRIu32 " stride: stride dimensions must be non-zero",
stride_width, stride_height);
goto error;
}
if (dilation_width == 0 || dilation_height == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 "x%" PRIu32 " dilation: "
"dilation dimensions must be non-zero",
dilation_width, dilation_height);
goto error;
}
if (groups == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %" PRIu32 " groups: number of groups must be non-zero", groups);
goto error;
}
if (group_input_channels == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %zu input channels per group: "
"number of channels must be non-zero",
group_input_channels);
goto error;
}
if (group_output_channels == 0) {
xnn_log_error(
"failed to create Deconvolution operator with %zu output channels per group: "
"number of channels must be non-zero",
group_output_channels);
goto error;
}
const size_t input_channels = groups * group_input_channels;
if (input_pixel_stride < input_channels) {
xnn_log_error(
"failed to create Deconvolution operator with input pixel stride of %zu: "
"stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
input_pixel_stride, groups, group_input_channels);
goto error;
}
const size_t output_channels = groups * group_output_channels;
if (output_pixel_stride < output_channels) {
xnn_log_error(
"failed to create Deconvolution operator with output pixel stride of %zu: "
"stride must be at least as large as the number of output channels (%" PRIu32 "x%zu)",
output_pixel_stride, groups, group_output_channels);
goto error;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to create Deconvolution operator with NaN output lower bound: lower bound must be non-NaN");
goto error;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to create Deconvolution operator with NaN output upper bound: upper bound must be non-NaN");
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Deconvolution operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
goto error;
}
status = xnn_status_out_of_memory;
deconvolution_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (deconvolution_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Deconvolution operator descriptor", sizeof(struct xnn_operator));
goto error;
}
uint32_t mr = xnn_params.f32.gemm.mr;
uint32_t nr = xnn_params.f32.gemm.nr;
uint32_t kr = UINT32_C(1) << xnn_params.f32.gemm.log2_kr;
uint32_t sr = UINT32_C(1) << xnn_params.f32.gemm.log2_sr;
xnn_igemm_ukernel_function ukernel_function = xnn_params.f32.gemm.igemm;
if (nr > group_output_channels) {
// Default micro-kernel is suboptimal. Try to find a better micro-kernel.
if (xnn_params.f32.gemm2.igemm != NULL) {
mr = xnn_params.f32.gemm2.mr;
nr = xnn_params.f32.gemm2.nr;
kr = UINT32_C(1) << xnn_params.f32.gemm2.log2_kr;
sr = UINT32_C(1) << xnn_params.f32.gemm2.log2_sr;
ukernel_function = xnn_params.f32.gemm2.igemm;
}
}
const uint32_t n_stride = round_up(group_output_channels, nr);
const uint32_t k_stride = round_up_po2(group_input_channels, kr);
const uint32_t kernel_size = kernel_height * kernel_width;
enum xnn_ukernel_type ukernel_type = xnn_ukernel_type_igemm;
size_t packed_group_weights_size = (sizeof(float) * kernel_size * k_stride + sizeof(float)) * n_stride;
if (max(stride_height, stride_width) > 1 && max(dilation_height, dilation_width) == 1 && stride_width <= kernel_width && stride_height <= kernel_height) {
ukernel_type = xnn_ukernel_type_subconv2d;
const size_t subkernels = stride_height * stride_width;
packed_group_weights_size = n_stride *
(sizeof(float) * kernel_size * k_stride + sizeof(float) * subkernels);
const size_t subconvolution_buffer_size = sizeof(struct subconvolution_params) * subkernels;
deconvolution_op->subconvolution_buffer = xnn_allocate_zero_simd_memory(subconvolution_buffer_size);
if (deconvolution_op->subconvolution_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for subconvolution buffer", subconvolution_buffer_size);
goto error;
}
struct subconvolution_params* subconvolution_params = deconvolution_op->subconvolution_buffer;
for (size_t offset_y = 0; offset_y < stride_height; offset_y++) {
for (size_t offset_x = 0; offset_x < stride_width; offset_x++) {
const size_t subkernel_height = divide_round_up(kernel_height - offset_y, stride_height);
const size_t subkernel_width = divide_round_up(kernel_width - offset_x, stride_width);
const size_t subkernel_size = subkernel_height * subkernel_width;
subconvolution_params->indirection_x_stride = sizeof(void*) * subkernel_size;
subconvolution_params->w_stride = sizeof(float) + k_stride * subkernel_size * sizeof(float);
subconvolution_params++;
}
}
}
deconvolution_op->packed_weights = xnn_allocate_simd_memory(packed_group_weights_size * groups);
if (deconvolution_op->packed_weights == NULL) {
xnn_log_error("failed to allocate %zu bytes for packed weights", packed_group_weights_size * groups);
goto error;
}
memset(deconvolution_op->packed_weights, 0, packed_group_weights_size * groups);
switch (ukernel_type) {
case xnn_ukernel_type_igemm:
xnn_pack_f32_conv_goki_w(
groups, group_output_channels, kernel_size, group_input_channels,
nr, kr, sr,
kernel, bias, deconvolution_op->packed_weights);
break;
case xnn_ukernel_type_subconv2d:
xnn_pack_f32_deconv_goki_w(
groups, group_output_channels, kernel_height, kernel_width, group_input_channels,
stride_height, stride_width,
nr, kr, sr,
kernel, bias, deconvolution_op->packed_weights, deconvolution_op->subconvolution_buffer);
break;
default:
XNN_UNREACHABLE;
}
const size_t zero_size = k_stride * sizeof(float) + XNN_EXTRA_BYTES;
void* zero_buffer = xnn_allocate_zero_simd_memory(zero_size);
if (zero_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for zero padding", zero_size);
goto error;
}
deconvolution_op->zero_buffer = zero_buffer;
deconvolution_op->padding_top = output_padding_top;
deconvolution_op->padding_right = output_padding_right;
deconvolution_op->padding_bottom = output_padding_bottom;
deconvolution_op->padding_left = output_padding_left;
deconvolution_op->kernel_height = kernel_height;
deconvolution_op->kernel_width = kernel_width;
deconvolution_op->stride_height = stride_height;
deconvolution_op->stride_width = stride_width;
deconvolution_op->dilation_height = dilation_height;
deconvolution_op->dilation_width = dilation_width;
deconvolution_op->groups = groups;
deconvolution_op->group_input_channels = group_input_channels;
deconvolution_op->group_output_channels = group_output_channels;
deconvolution_op->input_pixel_stride = input_pixel_stride;
deconvolution_op->output_pixel_stride = output_pixel_stride;
deconvolution_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
deconvolution_op->type = xnn_operator_type_deconvolution_nhwc_f32;
deconvolution_op->ukernel.type = ukernel_type;
deconvolution_op->ukernel.igemm = (struct xnn_ukernel_igemm) {
.default_function = ukernel_function,
.mr = mr,
.nr = nr,
.kr = kr,
};
deconvolution_op->state = xnn_run_state_invalid;
*deconvolution_op_out = deconvolution_op;
return xnn_status_success;
error:
xnn_delete_operator(deconvolution_op);
return status;
}
static enum xnn_status setup_conv_path(
xnn_operator_t deconvolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const void* input,
size_t output_height,
size_t output_width,
void* output,
uint32_t log2_input_element_size,
uint32_t log2_filter_element_size,
uint32_t bias_element_size,
uint32_t log2_output_element_size,
const void* params,
size_t num_threads)
{
assert(deconvolution_op->ukernel.type == xnn_ukernel_type_igemm);
const size_t kernel_height = deconvolution_op->kernel_height;
const size_t kernel_width = deconvolution_op->kernel_width;
const size_t kernel_size = kernel_height * kernel_width;
const size_t groups = deconvolution_op->groups;
const size_t output_size = output_height * output_width;
const size_t mr = deconvolution_op->ukernel.igemm.mr;
const size_t tiled_output_size = round_up(output_size, mr);
const size_t indirection_buffer_size = sizeof(void*) * kernel_size * tiled_output_size;
if (input_height != deconvolution_op->last_input_height ||
input_width != deconvolution_op->last_input_width)
{
const void** indirection_buffer = (const void**) xnn_reallocate_memory(deconvolution_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
return xnn_status_out_of_memory;
}
deconvolution_op->indirection_buffer = indirection_buffer;
deconvolution_op->last_input = input;
deconvolution_op->last_input_height = input_height;
deconvolution_op->last_input_width = input_width;
xnn_indirection_init_deconv2d(deconvolution_op, mr, log2_input_element_size);
}
const size_t group_input_channels = deconvolution_op->group_input_channels;
const size_t group_output_channels = deconvolution_op->group_output_channels;
const uint32_t nr = deconvolution_op->ukernel.igemm.nr;
const size_t w_stride = bias_element_size +
(round_up_po2(group_input_channels, deconvolution_op->ukernel.igemm.kr) * kernel_size << log2_filter_element_size);
deconvolution_op->context.igemm = (struct igemm_context) {
.ks = kernel_size,
.ks_scaled = kernel_size * mr * sizeof(void*),
.kc = group_input_channels << log2_input_element_size,
.w_stride = w_stride,
.indirect_a = deconvolution_op->indirection_buffer,
.a_offset = (size_t) ((uintptr_t) input - (uintptr_t) deconvolution_op->last_input),
.zero = deconvolution_op->zero_buffer,
.packed_w = deconvolution_op->packed_weights,
.c = deconvolution_op->output,
.cm_stride = deconvolution_op->output_pixel_stride << log2_output_element_size,
.cn_stride = nr << log2_output_element_size,
.ga_stride = group_input_channels << log2_input_element_size,
.gw_stride = w_stride * round_up(group_output_channels, nr),
.gc_stride = group_output_channels << log2_output_element_size,
.ba_stride = input_height * input_width * deconvolution_op->input_pixel_stride << log2_input_element_size,
.bc_stride = output_size * deconvolution_op->output_pixel_stride << log2_output_element_size,
.log2_csize = log2_output_element_size,
.ukernel = deconvolution_op->ukernel.igemm.default_function,
};
if (output_size == 1 && deconvolution_op->ukernel.igemm.mr1_function != NULL) {
deconvolution_op->context.igemm.ukernel = deconvolution_op->ukernel.igemm.mr1_function;
}
memcpy(&deconvolution_op->context.igemm.params, params, sizeof(deconvolution_op->context.igemm.params));
size_t nc = group_output_channels;
if (num_threads > 1) {
const size_t num_other_tiles = groups * batch_size * divide_round_up(output_size, mr);
const size_t target_tiles_per_thread = 5;
const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
if (max_nc < nc) {
nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
}
}
if (groups == 1) {
deconvolution_op->compute.type = xnn_parallelization_type_3d_tile_2d;
deconvolution_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_igemm;
deconvolution_op->compute.range[0] = batch_size;
deconvolution_op->compute.range[1] = output_size;
deconvolution_op->compute.range[2] = group_output_channels;
deconvolution_op->compute.tile[0] = mr;
deconvolution_op->compute.tile[1] = nc;
} else {
deconvolution_op->compute.type = xnn_parallelization_type_4d_tile_2d;
deconvolution_op->compute.task_4d_tile_2d = (pthreadpool_task_4d_tile_2d_t) xnn_compute_gigemm;
deconvolution_op->compute.range[0] = batch_size;
deconvolution_op->compute.range[1] = groups;
deconvolution_op->compute.range[2] = output_size;
deconvolution_op->compute.range[3] = group_output_channels;
deconvolution_op->compute.tile[0] = mr;
deconvolution_op->compute.tile[1] = nc;
}
deconvolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
static enum xnn_status setup_subconv2d_path(
xnn_operator_t deconvolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const void* input,
size_t output_height,
size_t output_width,
void* output,
uint32_t log2_input_element_size,
uint32_t log2_filter_element_size,
uint32_t bias_element_size,
uint32_t log2_output_element_size,
const void* params,
size_t num_threads)
{
assert(deconvolution_op->ukernel.type == xnn_ukernel_type_subconv2d);
const size_t kernel_height = deconvolution_op->kernel_height;
const size_t kernel_width = deconvolution_op->kernel_width;
const size_t kernel_size = kernel_height * kernel_width;
const size_t stride_height = deconvolution_op->stride_height;
const size_t stride_width = deconvolution_op->stride_width;
const size_t groups = deconvolution_op->groups;
const size_t output_size = output_height * output_width;
const size_t mr = deconvolution_op->ukernel.igemm.mr;
const size_t indirection_buffer_size =
sizeof(void*) * kernel_size * output_height * stride_width * round_up(divide_round_up(output_width, stride_width), mr);
if (input_height != deconvolution_op->last_input_height ||
input_width != deconvolution_op->last_input_width)
{
const void** indirection_buffer = (const void**) xnn_reallocate_memory(deconvolution_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
return xnn_status_out_of_memory;
}
deconvolution_op->indirection_buffer = indirection_buffer;
deconvolution_op->last_input = input;
deconvolution_op->last_input_height = input_height;
deconvolution_op->last_input_width = input_width;
xnn_indirection_init_subconv2d(deconvolution_op, mr, log2_input_element_size);
// Initialize subconvolution parameters which depend on output dimensions or MR.
struct subconvolution_params* subconvolution_params = deconvolution_op->subconvolution_buffer;
const size_t modulo_padding_top = deconvolution_op->padding_top % stride_height;
const size_t modulo_padding_left = deconvolution_op->padding_left % stride_width;
const size_t output_pixel_stride = deconvolution_op->output_pixel_stride << log2_output_element_size;
for (size_t offset_y = 0; offset_y < stride_height; offset_y++) {
for (size_t offset_x = 0; offset_x < stride_width; offset_x++) {
const size_t output_x_start = subtract_modulo(offset_x, modulo_padding_left, stride_width);
const size_t output_y_start = subtract_modulo(offset_y, modulo_padding_top, stride_height);
subconvolution_params->scaled_kernel_size = mr * subconvolution_params->indirection_x_stride;
subconvolution_params->slice_width = divide_round_up(output_width - output_x_start, stride_width);
subconvolution_params->slice_height = divide_round_up(output_height - output_y_start, stride_height);
subconvolution_params->output =
(void*) ((uintptr_t) output + ((output_y_start * output_width + output_x_start) * output_pixel_stride));
++subconvolution_params;
}
}
}
const size_t group_input_channels = deconvolution_op->group_input_channels;
const size_t group_output_channels = deconvolution_op->group_output_channels;
const uint32_t nr = deconvolution_op->ukernel.igemm.nr;
const size_t w_stride = stride_height * stride_width * bias_element_size +
(round_up_po2(group_input_channels, deconvolution_op->ukernel.igemm.kr) * kernel_size << log2_filter_element_size);
deconvolution_op->context.subconv = (struct subconv_context) {
.subconvolution_params = deconvolution_op->subconvolution_buffer,
.kc = group_input_channels << log2_input_element_size,
.a_offset = (size_t) ((uintptr_t) input - (uintptr_t) deconvolution_op->last_input),
.zero = deconvolution_op->zero_buffer,
.cx_stride = stride_width * deconvolution_op->output_pixel_stride << log2_output_element_size,
.cy_stride = stride_height * output_width * deconvolution_op->output_pixel_stride << log2_output_element_size,
.cn_stride = nr << log2_output_element_size,
.ga_stride = group_input_channels << log2_input_element_size,
.gw_stride = w_stride * round_up(group_output_channels, nr),
.gc_stride = group_output_channels << log2_output_element_size,
.ba_stride = input_height * input_width * deconvolution_op->input_pixel_stride << log2_input_element_size,
.bc_stride = output_size * deconvolution_op->output_pixel_stride << log2_output_element_size,
.log2_csize = log2_output_element_size,
.ukernel = deconvolution_op->ukernel.igemm.default_function,
};
memcpy(&deconvolution_op->context.subconv.params, params, sizeof(deconvolution_op->context.subconv.params));
const size_t output_height_positions = divide_round_up(output_height, stride_height);
const size_t output_width_positions = divide_round_up(output_width, stride_width);
size_t nc = group_output_channels;
if (num_threads > 1) {
const size_t num_other_tiles = groups * stride_height * stride_width *
output_height_positions * divide_round_up(output_width_positions, mr);
const size_t target_tiles_per_thread = 5;
const size_t max_nc = divide_round_up(group_output_channels * num_other_tiles, num_threads * target_tiles_per_thread);
if (max_nc < nc) {
nc = min(nc, divide_round_up(nc, max_nc * nr) * nr);
}
}
if (groups == 1) {
deconvolution_op->compute.type = xnn_parallelization_type_5d_tile_2d;
deconvolution_op->compute.task_5d_tile_2d = (pthreadpool_task_5d_tile_2d_t) xnn_compute_subconv2d;
deconvolution_op->compute.range[0] = batch_size;
deconvolution_op->compute.range[1] = stride_height * stride_width;
deconvolution_op->compute.range[2] = divide_round_up(output_height, stride_height);
deconvolution_op->compute.range[3] = divide_round_up(output_width, stride_width);
deconvolution_op->compute.range[4] = group_output_channels;
deconvolution_op->compute.tile[0] = mr;
deconvolution_op->compute.tile[1] = nc;
} else {
deconvolution_op->compute.type = xnn_parallelization_type_6d_tile_2d;
deconvolution_op->compute.task_6d_tile_2d = (pthreadpool_task_6d_tile_2d_t) xnn_compute_gsubconv2d;
deconvolution_op->compute.range[0] = batch_size;
deconvolution_op->compute.range[1] = groups;
deconvolution_op->compute.range[2] = stride_height * stride_width;
deconvolution_op->compute.range[3] = divide_round_up(output_height, stride_height);
deconvolution_op->compute.range[4] = divide_round_up(output_width, stride_width);
deconvolution_op->compute.range[5] = group_output_channels;
deconvolution_op->compute.tile[0] = mr;
deconvolution_op->compute.tile[1] = nc;
}
deconvolution_op->state = xnn_run_state_ready;
return xnn_status_success;
}
static enum xnn_status setup_deconvolution2d(
xnn_operator_t deconvolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
uint32_t adjustment_height,
uint32_t adjustment_width,
const void* input,
void* output,
uint32_t log2_input_element_size,
uint32_t log2_filter_element_size,
uint32_t bias_element_size,
uint32_t log2_output_element_size,
const void* params,
size_t num_threads)
{
deconvolution_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Deconvolution operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_width == 0 || input_height == 0) {
xnn_log_error(
"failed to setup Deconvolution with %zux%zu input: input dimensions must be non-zero",
input_width, input_height);
return xnn_status_invalid_parameter;
}
if (adjustment_height >= deconvolution_op->stride_height) {
xnn_log_error(
"failed to setup Deconvolution with %" PRIu32 " height adjustment: "
"height adjustment must be smaller than height stride (%" PRIu32 ")",
adjustment_height, deconvolution_op->stride_height);
return xnn_status_invalid_parameter;
}
if (adjustment_width >= deconvolution_op->stride_width) {
xnn_log_error(
"failed to setup Deconvolution with %" PRIu32 " width adjustment: "
"width adjustment must be smaller than width stride (%" PRIu32 ")",
adjustment_width, deconvolution_op->stride_width);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
deconvolution_op->state = xnn_run_state_skip;
return xnn_status_success;
}
deconvolution_op->batch_size = batch_size;
deconvolution_op->input_height = input_height;
deconvolution_op->input_width = input_width;
deconvolution_op->input = input;
deconvolution_op->output = output;
const size_t output_height = deconvolution_op->output_height = compute_output_dimension(
input_height, deconvolution_op->padding_top + deconvolution_op->padding_bottom,
adjustment_height, deconvolution_op->kernel_height, deconvolution_op->dilation_height, deconvolution_op->stride_height);
const size_t output_width = deconvolution_op->output_width = compute_output_dimension(
input_width, deconvolution_op->padding_left + deconvolution_op->padding_right,
adjustment_width, deconvolution_op->kernel_width, deconvolution_op->dilation_width, deconvolution_op->stride_width);
switch (deconvolution_op->ukernel.type) {
case xnn_ukernel_type_igemm:
return setup_conv_path(
deconvolution_op,
batch_size,
input_height, input_width, input,
output_height, output_width, output,
log2_input_element_size, log2_filter_element_size, bias_element_size, log2_output_element_size,
params, num_threads);
case xnn_ukernel_type_subconv2d:
return setup_subconv2d_path(
deconvolution_op,
batch_size,
input_height, input_width, input,
output_height, output_width, output,
log2_input_element_size, log2_filter_element_size, bias_element_size, log2_output_element_size,
params, num_threads);
default:
XNN_UNREACHABLE;
}
}
enum xnn_status xnn_setup_deconvolution2d_nhwc_q8(
xnn_operator_t deconvolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
uint32_t adjustment_height,
uint32_t adjustment_width,
const uint8_t* input,
uint8_t* output,
pthreadpool_t threadpool)
{
if (deconvolution_op->type != xnn_operator_type_deconvolution_nhwc_q8) {
xnn_log_error("failed to setup Deconvolution (NHWC, Q8) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
return setup_deconvolution2d(
deconvolution_op,
batch_size, input_height, input_width,
adjustment_height, adjustment_width,
input, output,
0 /* log2(sizeof(input element)) = log2(sizeof(uint8_t)) */,
0 /* log2(sizeof(filter element)) = log2(sizeof(uint8_t)) */,
sizeof(int32_t) /* sizeof(bias element) */,
0 /* log2(sizeof(output element)) = log2(sizeof(uint8_t)) */,
&deconvolution_op->q8_gemm_params,
pthreadpool_get_threads_count(threadpool));
}
enum xnn_status xnn_setup_deconvolution2d_nhwc_f32(
xnn_operator_t deconvolution_op,
size_t batch_size,
size_t input_height,
size_t input_width,
uint32_t adjustment_height,
uint32_t adjustment_width,
const float* input,
float* output,
pthreadpool_t threadpool)
{
if (deconvolution_op->type != xnn_operator_type_deconvolution_nhwc_f32) {
xnn_log_error("failed to setup Deconvolution (NHWC, F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
return setup_deconvolution2d(
deconvolution_op,
batch_size, input_height, input_width,
adjustment_height, adjustment_width,
input, output,
2 /* log2(sizeof(input element)) = log2(sizeof(float)) */,
2 /* log2(sizeof(filter element)) = log2(sizeof(float)) */,
sizeof(float) /* sizeof(bias element) */,
2 /* log2(sizeof(output element)) = log2(sizeof(float)) */,
&deconvolution_op->f32_output_params,
pthreadpool_get_threads_count(threadpool));
}