blob: 45d372562c19b8295646778586e5c53f584a7dd9 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xnnpack.h>
#include <xnnpack/allocator.h>
#include <xnnpack/operator.h>
#include <xnnpack/common.h>
#include <xnnpack/log.h>
#include <xnnpack/math.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
#include <xnnpack/indirection.h>
static inline size_t compute_output_dimension(
size_t padded_input_dimension,
size_t kernel_dimension)
{
return padded_input_dimension / kernel_dimension;
}
static const struct argmaxpool_parameters* select_ukernel(
size_t pooling_size,
const struct argmaxpool_parameters* ukernel)
{
while (ukernel->qr == 0 && ukernel->mr < pooling_size) {
ukernel++;
}
return ukernel;
}
enum xnn_status xnn_create_argmax_pooling2d_nhwc_f32(
uint32_t input_padding_top,
uint32_t input_padding_right,
uint32_t input_padding_bottom,
uint32_t input_padding_left,
uint32_t pooling_height,
uint32_t pooling_width,
size_t channels,
size_t input_pixel_stride,
size_t output_pixel_stride,
float output_min,
float output_max,
uint32_t flags,
xnn_operator_t* argmax_pooling_op_out)
{
xnn_operator_t argmax_pooling_op = NULL;
enum xnn_status status = xnn_status_uninitialized;
if (!xnn_params.initialized) {
xnn_log_error("failed to create Argmax Pooling operator: XNNPACK is not initialized");
goto error;
}
status = xnn_status_invalid_parameter;
const uint32_t pooling_size = pooling_height * pooling_width;
if (pooling_size == 0) {
xnn_log_error(
"failed to create Argmax Pooling operator with %" PRIu32 "x%" PRIu32 " pooling size: "
"pooling size dimensions must be non-zero",
pooling_width, pooling_height);
goto error;
}
if (pooling_size == 1) {
xnn_log_error(
"failed to create Argmax Pooling operator with 1 pooling element: "
"1x1 pooling is meaningless");
goto error;
}
if (channels == 0) {
xnn_log_error(
"failed to create Argmax Pooling operator with %zu channels: "
"number of channels must be non-zero",
channels);
goto error;
}
if (input_pixel_stride < channels) {
xnn_log_error(
"failed to create Argmax Pooling operator with input pixel stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
input_pixel_stride, channels);
goto error;
}
if (output_pixel_stride < channels) {
xnn_log_error(
"failed to create Argmax Pooling operator with output pixel stride of %zu: "
"stride must be at least as large as the number of channels (%zu)",
output_pixel_stride, channels);
goto error;
}
if (isnan(output_min)) {
xnn_log_error(
"failed to create Argmax Pooling operator with NaN output lower bound: "
"lower bound must be non-NaN");
goto error;
}
if (isnan(output_max)) {
xnn_log_error(
"failed to create Argmax Pooling operator with NaN output upper bound: "
"upper bound must be non-NaN");
goto error;
}
if (output_min >= output_max) {
xnn_log_error(
"failed to create Argmax Pooling operator with [%.7g, %.7g] output range: "
"lower bound must be below upper bound",
output_min, output_max);
goto error;
}
status = xnn_status_out_of_memory;
argmax_pooling_op = xnn_allocate_zero_simd_memory(sizeof(struct xnn_operator));
if (argmax_pooling_op == NULL) {
xnn_log_error("failed to allocate %zu bytes for Argmax Pooling operator descriptor", sizeof(struct xnn_operator));
goto error;
}
argmax_pooling_op->padding_top = input_padding_top;
argmax_pooling_op->padding_right = input_padding_right;
argmax_pooling_op->padding_bottom = input_padding_bottom;
argmax_pooling_op->padding_left = input_padding_left;
argmax_pooling_op->kernel_height = pooling_height;
argmax_pooling_op->kernel_width = pooling_width;
argmax_pooling_op->stride_height = pooling_height;
argmax_pooling_op->stride_width = pooling_width;
argmax_pooling_op->dilation_height = 1;
argmax_pooling_op->dilation_width = 1;
argmax_pooling_op->channels = channels;
argmax_pooling_op->input_pixel_stride = input_pixel_stride;
argmax_pooling_op->output_pixel_stride = output_pixel_stride;
argmax_pooling_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
argmax_pooling_op->type = xnn_operator_type_argmax_pooling_nhwc_f32;
argmax_pooling_op->ukernel.type = xnn_ukernel_type_argmax_pooling;
argmax_pooling_op->state = xnn_run_state_invalid;
*argmax_pooling_op_out = argmax_pooling_op;
return xnn_status_success;
error:
xnn_delete_operator(argmax_pooling_op);
return status;
}
enum xnn_status xnn_setup_argmax_pooling2d_nhwc_f32(
xnn_operator_t argmax_pooling_op,
size_t batch_size,
size_t input_height,
size_t input_width,
const float* input,
float* output,
uint32_t* index,
pthreadpool_t threadpool)
{
if (argmax_pooling_op->type != xnn_operator_type_argmax_pooling_nhwc_f32) {
xnn_log_error("failed to setup Argmax Pooling (NHWC, F32) operator: operator type mismatch");
return xnn_status_invalid_parameter;
}
argmax_pooling_op->state = xnn_run_state_invalid;
if (!xnn_params.initialized) {
xnn_log_error("failed to setup Argmax Pooling operator: XNNPACK is not initialized");
return xnn_status_uninitialized;
}
if (input_width == 0 || input_height == 0) {
xnn_log_error(
"failed to setup Argmax Pooling operator with %zux%zu input: input dimensions must be non-zero",
input_width, input_height);
return xnn_status_invalid_parameter;
}
if (batch_size == 0) {
argmax_pooling_op->state = xnn_run_state_skip;
return xnn_status_success;
}
argmax_pooling_op->batch_size = batch_size;
argmax_pooling_op->input_height = input_height;
argmax_pooling_op->input_width = input_width;
argmax_pooling_op->input = input;
argmax_pooling_op->output_height = compute_output_dimension(
argmax_pooling_op->padding_top + input_height + argmax_pooling_op->padding_bottom,
argmax_pooling_op->kernel_height);
argmax_pooling_op->output_width = compute_output_dimension(
argmax_pooling_op->padding_left + input_width + argmax_pooling_op->padding_right,
argmax_pooling_op->kernel_width);
const size_t pooling_height = argmax_pooling_op->kernel_height;
const size_t pooling_width = argmax_pooling_op->kernel_width;
const size_t pooling_size = pooling_height * pooling_width;
const size_t output_height = argmax_pooling_op->output_height;
const size_t output_width = argmax_pooling_op->output_width;
const struct argmaxpool_parameters* ukernel = select_ukernel(pooling_size, xnn_params.f32.argmaxpool);
const uint32_t mr = ukernel->mr;
const size_t step_width = pooling_width;
const size_t step_height = pooling_size + (output_width - 1) * step_width * pooling_height;
if (input_height != argmax_pooling_op->last_input_height ||
input_width != argmax_pooling_op->last_input_width)
{
// Micro-kernel may read up to (mr - 1) elements after the end of indirection buffer.
const size_t indirection_buffer_size = sizeof(void*) * ((mr - 1) + output_height * step_height);
const void** indirection_buffer = (const void**) xnn_reallocate_memory(argmax_pooling_op->indirection_buffer, indirection_buffer_size);
if (indirection_buffer == NULL) {
xnn_log_error("failed to allocate %zu bytes for indirection buffer", indirection_buffer_size);
return xnn_status_out_of_memory;
}
argmax_pooling_op->indirection_buffer = indirection_buffer;
xnn_indirection_init_maxpool2d(argmax_pooling_op, step_height, step_width, 2 /* log2(sizeof(float)) */);
argmax_pooling_op->last_input = input;
argmax_pooling_op->last_input_height = input_height;
argmax_pooling_op->last_input_width = input_width;
}
const size_t channels = argmax_pooling_op->channels;
const size_t indirect_input_height_stride = step_height * sizeof(void*);
const size_t output_width_stride = argmax_pooling_op->output_pixel_stride * sizeof(float);
const size_t output_height_stride = output_width * output_width_stride;
const size_t index_height_stride = output_width * channels * sizeof(uint32_t);
const uint32_t qr = ukernel->qr;
const size_t multipass_adjustment = qr == 0 ? 0 : round_up(pooling_size - mr, qr) + mr - qr;
argmax_pooling_op->context.argmax_pooling = (struct argmax_pooling_context) {
.indirect_input = argmax_pooling_op->indirection_buffer,
.indirect_input_height_stride = indirect_input_height_stride,
.input_offset = (size_t) ((uintptr_t) input - (uintptr_t) argmax_pooling_op->last_input),
.input_batch_stride = input_height * input_width * argmax_pooling_op->input_pixel_stride * sizeof(float),
.output = output,
.output_batch_stride = output_height * output_height_stride,
.output_height_stride = output_height_stride,
.output_width = output_width,
.index = index,
.index_batch_stride = output_height * index_height_stride,
.index_height_stride = index_height_stride,
.pooling_size = pooling_size,
.channels = channels,
.input_increment = (pooling_height * step_width - multipass_adjustment) * sizeof(void*),
.output_increment = output_width_stride - channels * sizeof(float),
.params.f32 = argmax_pooling_op->f32_output_params,
};
argmax_pooling_op->compute.type = xnn_parallelization_type_2d;
argmax_pooling_op->compute.range[0] = batch_size;
argmax_pooling_op->compute.range[1] = output_height;
if (pooling_size <= mr) {
argmax_pooling_op->context.argmax_pooling.unipass_ukernel = ukernel->up;
argmax_pooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_argmax_pooling_unipass;
} else {
argmax_pooling_op->context.argmax_pooling.multipass_ukernel = ukernel->mp;
argmax_pooling_op->compute.task_2d = (pthreadpool_task_2d_t) xnn_compute_argmax_pooling_multipass;
}
argmax_pooling_op->state = xnn_run_state_ready;
return xnn_status_success;
}