blob: 0f4d614ec6d1809cb828e055dafd7edd00ed52ae [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert REQUANTIZATION in ["GEMMLOWP", "FP32"]
$assert DATATYPE in ["QC8", "QS8", "QU8"]
$assert DATATYPE != "QC8" or REQUANTIZATION == "FP32"
$assert CHANNEL_TILE % 16 == 0
$assert CHANNEL_TILE >= 16
$assert KERNEL_TILE >= 2
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/dwconv.h>
#include <xnnpack/intrinsics-polyfill.h>
$PARAMS_STRUCT = "avx512" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_avx512"
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_%s_conv_minmax_params" % DATATYPE.lower()
$XINT8_T = "uint8_t" if DATATYPE == "QU8" else "int8_t"
$_MM512_CVTEPX8_EPI32 = "_mm512_cvtepu8_epi32" if DATATYPE == "QU8" else "_mm512_cvtepi8_epi32"
$_MM256_PACKXS_EPI16 = "_mm256_packus_epi16" if DATATYPE == "QU8" else "_mm256_packs_epi16"
$_MM_PACKXS_EPI16 = "_mm_packus_epi16" if DATATYPE == "QU8" else "_mm_packs_epi16"
$_MM256_MIN_EPX8 = "_mm256_min_epu8" if DATATYPE == "QU8" else "_mm256_min_epi8"
$_MM256_MAX_EPX8 = "_mm256_max_epu8" if DATATYPE == "QU8" else "_mm256_max_epi8"
$_MM_MIN_EPX8 = "_mm_min_epu8" if DATATYPE == "QU8" else "_mm_min_epi8"
$_MM_MAX_EPX8 = "_mm_max_epu8" if DATATYPE == "QU8" else "_mm_max_epi8"
void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__avx512skx_mul32(
size_t channels,
size_t output_width,
const ${XINT8_T}** input,
const void* weights,
${XINT8_T}* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const ${XINT8_T}* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
{
assert(channels != 0);
assert(output_width != 0);
$if DATATYPE != "QC8":
$if REQUANTIZATION == "GEMMLOWP":
const __mmask16 vblend_mask = _cvtu32_mask16(0xAAAA);
const __m512i vmultiplier = _mm512_set1_epi64(params->${PARAMS_STRUCT}.multiplier);
const __m512i vrounding = _mm512_set1_epi64(params->${PARAMS_STRUCT}.rounding);
const __m512i vremainder_mask = _mm512_set1_epi32(params->${PARAMS_STRUCT}.remainder_mask);
const __m512i vremainder_threshold = _mm512_set1_epi32(params->${PARAMS_STRUCT}.remainder_threshold);
const __m128i vshift = _mm_loadl_epi64((const __m128i*) &params->${PARAMS_STRUCT}.shift);
$else:
const __m512 vscale = _mm512_load_ps(params->${PARAMS_STRUCT}.scale);
$if CHANNEL_TILE > 16:
const __m512i voutput_zero_point = _mm512_load_si512(params->${PARAMS_STRUCT}.output_zero_point);
const __m256i voutput_min = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_min);
const __m256i voutput_max = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_max);
const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 5, 1, 6, 2, 4, 0);
$else:
const __m256i voutput_zero_point = _mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.output_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->${PARAMS_STRUCT}.output_max);
$if DATATYPE == "QU8":
const __m512i vk_zero_point = _mm512_cvtepu16_epi32(_mm256_load_si256((const __m256i*) params->${PARAMS_STRUCT}.kernel_zero_point));
do {
$for K in range(KERNEL_TILE):
const ${XINT8_T}* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const ${XINT8_T}*) ((uintptr_t) i${K} + input_offset);
}
input = (const ${XINT8_T}**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
__m512i vacc${ABC[0:16]} = _mm512_loadu_si512(w);
$for C in range(16, CHANNEL_TILE, 16):
__m512i vacc${ABC[C:C+16]} = _mm512_loadu_si512((const void*) ((uintptr_t) w + ${C} * sizeof(int32_t)));
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 16):
$if C == 0:
const __m512i vi${K}x${ABC[0:16]} = ${_MM512_CVTEPX8_EPI32}(_mm_loadu_si128((const __m128i*) i${K}));
$else:
const __m512i vi${K}x${ABC[C:C+16]} = ${_MM512_CVTEPX8_EPI32}(_mm_loadu_si128((const __m128i*) (i${K} + ${C})));
$if DATATYPE == "QU8":
const __m512i vk${K}x${ABC[C:C+16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_load_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T})))), vk_zero_point);
$else:
const __m512i vk${K}x${ABC[C:C+16]} = _mm512_cvtepi8_epi32(_mm_load_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE + C} * sizeof(${XINT8_T}))));
i${K} += ${CHANNEL_TILE};
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C:C+16]} = _mm512_add_epi32(vacc${ABC[C:C+16]}, _mm512_mullo_epi32(vi${K}x${ABC[C:C+16]}, vk${K}x${ABC[C:C+16]}));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${KERNEL_TILE * CHANNEL_TILE} * sizeof(${XINT8_T}));
$if REQUANTIZATION == "GEMMLOWP":
$for C in range(0, CHANNEL_TILE, 16):
const __m512i vacc${ABC[C+1:C+16:2]} = _mm512_shuffle_epi32(vacc${ABC[C:C+16]}, _MM_SHUFFLE(3, 3, 1, 1));
$for C in range(0, CHANNEL_TILE, 16):
const __m512i vprod${ABC[C:C+16:2]} = _mm512_add_epi64(_mm512_mul_epi32(vacc${ABC[C:C+16]}, vmultiplier), vrounding);
const __m512i vprod${ABC[C+1:C+16:2]} = _mm512_add_epi64(_mm512_mul_epi32(vacc${ABC[C+1:C+16:2]}, vmultiplier), vrounding);
$for C in range(0, CHANNEL_TILE, 16):
const __m512i vq31prod${ABC[C:C+16:2]} = _mm512_srli_epi64(vprod${ABC[C:C+16:2]}, 31);
const __m512i vq31prod${ABC[C+1:C+16:2]} = _mm512_add_epi64(vprod${ABC[C+1:C+16:2]}, vprod${ABC[C+1:C+16:2]});
$for C in range(0, CHANNEL_TILE, 16):
const __m512i vq31prod${ABC[C:C+16]} = _mm512_mask_blend_epi32(vblend_mask, vq31prod${ABC[C:C+16:2]}, vq31prod${ABC[C+1:C+16:2]});
$for C in range(0, CHANNEL_TILE, 16):
const __m512i vrem${ABC[C:C+16]} =
_mm512_add_epi32(_mm512_and_epi32(vq31prod${ABC[C:C+16]}, vremainder_mask), _mm512_srai_epi32(vq31prod${ABC[C:C+16]}, 31));
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C:C+16]} = _mm512_sra_epi32(vq31prod${ABC[C:C+16]}, vshift);
const __m512i vminus_one = _mm512_set1_epi32(-1);
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C:C+16]} = _mm512_mask_sub_epi32(vacc${ABC[C:C+16]}, _mm512_cmpgt_epi32_mask(vrem${ABC[C:C+16]}, vremainder_threshold), vacc${ABC[C:C+16]}, vminus_one);
$elif REQUANTIZATION == "FP32":
$for C in range(0, CHANNEL_TILE, 16):
__m512 vscaled${ABC[C:C+16]} = _mm512_cvtepi32_ps(vacc${ABC[C:C+16]});
$if DATATYPE == "QC8":
const __m512 vscale${ABC[0:16]} = _mm512_loadu_ps(w);
$for C in range(16, CHANNEL_TILE, 16):
const __m512 vscale${ABC[C:C+16]} = _mm512_loadu_ps((const void*) ((uintptr_t) w + ${C} * sizeof(float)));
w = (const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(float));
$for C in range(0, CHANNEL_TILE, 16):
vscaled${ABC[C:C+16]} = _mm512_mul_ps(vscaled${ABC[C:C+16]}, vscale${ABC[C:C+16]});
$else:
$for C in range(0, CHANNEL_TILE, 16):
vscaled${ABC[C:C+16]} = _mm512_mul_ps(vscaled${ABC[C:C+16]}, vscale);
$for C in range(0, CHANNEL_TILE, 16):
vacc${ABC[C:C+16]} = _mm512_cvtps_epi32(vscaled${ABC[C:C+16]});
$for C in range(0, CHANNEL_TILE, 16):
$if C + 16 < CHANNEL_TILE:
__m512i vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]} = _mm512_adds_epi16(_mm512_packs_epi32(vacc${ABC[C:C+16]}, vacc${ABC[C+16:C+32]}), voutput_zero_point);
$elif CHANNEL_TILE > 16:
__m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[C:C+16]}), _mm512_extracti32x8_epi32(vacc${ABC[C:C+16]}, 1)), _mm512_castsi512_si256(voutput_zero_point));
$else:
__m256i vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[C:C+16]}), _mm512_extracti32x8_epi32(vacc${ABC[C:C+16]}, 1)), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 16 < CHANNEL_TILE:
const __m256i vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]} = _mm512_castsi512_si256(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]});
const __m256i vout${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]} = _mm512_extracti32x8_epi32(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]}, 1);
const __m256i vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+12:C+16]}${ABC[C+28:C+32]} = ${_MM256_PACKXS_EPI16}(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}, vout${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+12:C+16]}${ABC[C+28:C+32]});
__m256i vout${ABC[C:C+32]} = _mm256_permutevar8x32_epi32(vout${ABC[C:C+4]}${ABC[C+16:C+20]}${ABC[C+8:C+12]}${ABC[C+24:C+28]}${ABC[C+4:C+8]}${ABC[C+20:C+24]}${ABC[C+12:C+16]}${ABC[C+28:C+32]}, vpermute_mask);
$else:
const __m128i vout${ABC[C:C+4]}${ABC[C+8:C+12]} = _mm256_castsi256_si128(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]});
const __m128i vout${ABC[C+4:C+8]}${ABC[C+12:C+16]} = _mm256_extracti128_si256(vout${ABC[C:C+4]}${ABC[C+8:C+12]}${ABC[C+4:C+8]}${ABC[C+12:C+16]}, 1);
__m128i vout${ABC[C:C+16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(vout${ABC[C:C+4]}${ABC[C+8:C+12]}, vout${ABC[C+4:C+8]}${ABC[C+12:C+16]}), _MM_SHUFFLE(3, 1, 2, 0));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 16 < CHANNEL_TILE:
vout${ABC[C:C+32]} = ${_MM256_MAX_EPX8}(vout${ABC[C:C+32]}, voutput_min);
vout${ABC[C:C+32]} = ${_MM256_MIN_EPX8}(vout${ABC[C:C+32]}, voutput_max);
$elif CHANNEL_TILE > 16:
vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, _mm256_castsi256_si128(voutput_min));
vout${ABC[C:C+16]} = ${_MM_MIN_EPX8}(vout${ABC[C:C+16]}, _mm256_castsi256_si128(voutput_max));
$else:
vout${ABC[C:C+16]} = ${_MM_MAX_EPX8}(vout${ABC[C:C+16]}, voutput_min);
vout${ABC[C:C+16]} = ${_MM_MIN_EPX8}(vout${ABC[C:C+16]}, voutput_max);
$if CHANNEL_TILE > 16:
_mm256_storeu_si256((__m256i*) output, vout${ABC[0:32]});
$else:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$for C in range(16, CHANNEL_TILE, 16):
$if C + 16 < CHANNEL_TILE:
_mm256_storeu_si256((__m256i*) (output + ${C}), vout${ABC[C:C+32]});
$else:
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
output += ${CHANNEL_TILE};
}
if XNN_UNLIKELY(c != 0) {
// Prepare mask for valid 8-bit elements (depends on nc).
const __mmask16 vmask = _cvtu32_mask16((uint32_t) ((UINT32_C(1) << (c & 15)) - UINT32_C(1)));
$if CHANNEL_TILE > 16:
const ${XINT8_T}* k = (const ${XINT8_T}*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t));
${"do " if CHANNEL_TILE > 16 else ""}{
__m512i vacc${ABC[0:16]} = _mm512_loadu_si512(w);
$for K in range(KERNEL_TILE):
const __m512i vi${K}x${ABC[0:16]} = ${_MM512_CVTEPX8_EPI32}(_mm_loadu_si128((const __m128i*) i${K}));
$if DATATYPE == "QU8":
$if CHANNEL_TILE > 16:
$if K == 0:
const __m512i vk${K}x${ABC[0:16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_loadu_si128((const __m128i*) k)), vk_zero_point);
$else:
const __m512i vk${K}x${ABC[0:16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_loadu_si128((const __m128i*) (k + ${K * CHANNEL_TILE}))), vk_zero_point);
$else:
const __m512i vk${K}x${ABC[0:16]} = _mm512_sub_epi32(_mm512_cvtepu8_epi32(_mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T})))), vk_zero_point);
$else:
$if CHANNEL_TILE > 16:
$if K == 0:
const __m512i vk${K}x${ABC[0:16]} = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i*) k));
$else:
const __m512i vk${K}x${ABC[0:16]} = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i*) (k + ${K * CHANNEL_TILE})));
$else:
const __m512i vk${K}x${ABC[0:16]} = _mm512_cvtepi8_epi32(_mm_loadu_si128((const __m128i*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${K * CHANNEL_TILE} * sizeof(${XINT8_T}))));
$if CHANNEL_TILE > 16:
i${K} += 16;
vacc${ABC[0:16]} = _mm512_add_epi32(vacc${ABC[0:16]}, _mm512_mullo_epi32(vi${K}x${ABC[0:16]}, vk${K}x${ABC[0:16]}));
$if CHANNEL_TILE > 16:
k += 16;
$if REQUANTIZATION == "GEMMLOWP":
const __m512i vacc${ABC[1:16:2]} = _mm512_shuffle_epi32(vacc${ABC[0:16]}, _MM_SHUFFLE(3, 3, 1, 1));
const __m512i vprod${ABC[0:16:2]} = _mm512_add_epi64(_mm512_mul_epi32(vacc${ABC[0:16]}, vmultiplier), vrounding);
const __m512i vprod${ABC[1:16:2]} = _mm512_add_epi64(_mm512_mul_epi32(vacc${ABC[1:16:2]}, vmultiplier), vrounding);
const __m512i vq31prod${ABC[0:16:2]} = _mm512_srli_epi64(vprod${ABC[0:16:2]}, 31);
const __m512i vq31prod${ABC[1:16:2]} = _mm512_add_epi64(vprod${ABC[1:16:2]}, vprod${ABC[1:16:2]});
const __m512i vq31prod${ABC[0:16]} = _mm512_mask_blend_epi32(vblend_mask, vq31prod${ABC[0:16:2]}, vq31prod${ABC[1:16:2]});
const __m512i vrem${ABC[0:16]} = _mm512_add_epi32(_mm512_and_epi32(vq31prod${ABC[0:16]}, vremainder_mask), _mm512_srai_epi32(vq31prod${ABC[0:16]}, 31));
vacc${ABC[0:16]} = _mm512_sra_epi32(vq31prod${ABC[0:16]}, vshift);
vacc${ABC[0:16]} = _mm512_mask_sub_epi32(vacc${ABC[0:16]}, _mm512_cmpgt_epi32_mask(vrem${ABC[0:16]}, vremainder_threshold), vacc${ABC[0:16]}, _mm512_set1_epi32(-1));
$elif REQUANTIZATION == "FP32":
__m512 vscaled${ABC[0:16]} = _mm512_cvtepi32_ps(vacc${ABC[0:16]});
$if DATATYPE == "QC8":
const __m512 vscale${ABC[0:16]} = _mm512_loadu_ps((const void*) ((uintptr_t) w + ${CHANNEL_TILE} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(${XINT8_T})));
vscaled${ABC[0:16]} = _mm512_mul_ps(vscaled${ABC[0:16]}, vscale${ABC[0:16]});
$else:
vscaled${ABC[0:16]} = _mm512_mul_ps(vscaled${ABC[0:16]}, vscale);
vacc${ABC[0:16]} = _mm512_cvtps_epi32(vscaled${ABC[0:16]});
$if CHANNEL_TILE > 16:
w = (const void*) ((uintptr_t) w + 16 * sizeof(int32_t));
$if CHANNEL_TILE > 16:
__m256i vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[0:16]}), _mm512_extracti32x8_epi32(vacc${ABC[0:16]}, 1)), _mm512_castsi512_si256(voutput_zero_point));
$else:
__m256i vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]} = _mm256_adds_epi16(_mm256_packs_epi32(_mm512_castsi512_si256(vacc${ABC[0:16]}), _mm512_extracti32x8_epi32(vacc${ABC[0:16]}, 1)), voutput_zero_point);
const __m128i vout${ABC[0:4]}${ABC[8:12]} = _mm256_castsi256_si128(vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]});
const __m128i vout${ABC[4:8]}${ABC[12:16]} = _mm256_extracti128_si256(vout${ABC[0:4]}${ABC[8:12]}${ABC[4:8]}${ABC[12:16]}, 1);
__m128i vout${ABC[0:16]} = _mm_shuffle_epi32(${_MM_PACKXS_EPI16}(vout${ABC[0:4]}${ABC[8:12]}, vout${ABC[4:8]}${ABC[12:16]}), _MM_SHUFFLE(3, 1, 2, 0));
$if CHANNEL_TILE > 16:
vout${ABC[0:16]} = ${_MM_MAX_EPX8}(vout${ABC[0:16]}, _mm256_castsi256_si128(voutput_min));
vout${ABC[0:16]} = ${_MM_MIN_EPX8}(vout${ABC[0:16]}, _mm256_castsi256_si128(voutput_max));
$else:
vout${ABC[0:16]} = ${_MM_MAX_EPX8}(vout${ABC[0:16]}, voutput_min);
vout${ABC[0:16]} = ${_MM_MIN_EPX8}(vout${ABC[0:16]}, voutput_max);
$if CHANNEL_TILE > 16:
if XNN_LIKELY(c >= 16) {
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
output += 16;
c -= 16;
} else {
_mm_mask_storeu_epi8(output, vmask, vout${ABC[0:16]});
output = (${XINT8_T}*) ((uintptr_t) output + c);
c = 0;
}
$else:
_mm_mask_storeu_epi8(output, vmask, vout${ABC[0:16]});
output = (${XINT8_T}*) ((uintptr_t) output + c);
}${" while (c != 0);" if CHANNEL_TILE > 16 else ""}
}
output = (${XINT8_T}*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}