blob: f88eb05a0c5bc1bda1d41ecb2910196ac7999eb6 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert REQUANTIZATION in ["FP32", "GEMMLOWP", "RNDNU"]
$assert DATATYPE in ["QC8", "QS8"]
$assert DATATYPE != "QC8" or REQUANTIZATION == "FP32"
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert KERNEL_TILE >= 2
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
$if REQUANTIZATION == "FP32" and ARMV8:
#include <xnnpack/intrinsics-polyfill.h>
$PARAMS_UNION = "xnn_qs8_minmax_params" if DATATYPE == "QC8" else "xnn_qs8_conv_minmax_params"
$PARAMS_STRUCT = ("" if DATATYPE == "QC8" else REQUANTIZATION.lower() + "_") + ("neonv8" if ARMV8 and DATATYPE != "QC8" else "neon")
$if REQUANTIZATION == "FP32" and DATATYPE == "QC8" and not ARMV8:
$PARAMS_STRUCT = "neon_fp32"
$ISA = "neonv8" if ARMV8 else "neon"
void xnn_${DATATYPE.lower()}_dwconv_minmax_${REQUANTIZATION.lower()}_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__${ISA}_${"mla" if MLA else "mul"}8(
size_t channels,
size_t output_width,
const int8_t** input,
const void* weights,
int8_t* output,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const int8_t* zero,
const union ${PARAMS_UNION} params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN XNN_DISABLE_MSAN
{
assert(channels != 0);
assert(output_width != 0);
$if REQUANTIZATION == "GEMMLOWP":
const int32x4_t vmultiplier = vld1q_dup_s32(&params->${PARAMS_STRUCT}.multiplier);
const int32x4_t vright_shift = vld1q_dup_s32(&params->${PARAMS_STRUCT}.right_shift);
const int32x4_t vzero_shift_mask = vreinterpretq_s32_u32(vceqq_s32(vright_shift, vmovq_n_s32(0)));
$elif REQUANTIZATION == "RNDNU":
const int32x4_t vright_pre_shift = vld1q_dup_s32(&params->${PARAMS_STRUCT}.right_pre_shift);
const int32x4_t vmultiplier = vld1q_dup_s32(&params->${PARAMS_STRUCT}.multiplier);
const int32x4_t vright_post_shift = vld1q_dup_s32(&params->${PARAMS_STRUCT}.right_post_shift);
$elif REQUANTIZATION == "FP32":
$if DATATYPE != "QC8":
const float32x4_t vscale = vld1q_dup_f32(&params->${PARAMS_STRUCT}.scale);
$if not ARMV8:
const float32x4_t voutput_min_less_zero_point = vld1q_dup_f32(&params->${PARAMS_STRUCT}.output_min_less_zero_point);
const float32x4_t voutput_max_less_zero_point = vld1q_dup_f32(&params->${PARAMS_STRUCT}.output_max_less_zero_point);
const float32x4_t vmagic_bias = vld1q_dup_f32(&params->${PARAMS_STRUCT}.magic_bias);
const int32x4_t vmagic_bias_less_zero_point = vld1q_dup_s32(&params->${PARAMS_STRUCT}.magic_bias_less_zero_point);
$if REQUANTIZATION != "FP32" or ARMV8:
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->${PARAMS_STRUCT}.output_zero_point);
$if CHANNEL_TILE == 8:
const int8x8_t voutput_min = vld1_dup_s8(&params->${PARAMS_STRUCT}.output_min);
const int8x8_t voutput_max = vld1_dup_s8(&params->${PARAMS_STRUCT}.output_max);
$else:
const int8x16_t voutput_min = vld1q_dup_s8(&params->${PARAMS_STRUCT}.output_min);
const int8x16_t voutput_max = vld1q_dup_s8(&params->${PARAMS_STRUCT}.output_max);
do {
$for K in range(KERNEL_TILE):
const int8_t* i${K} = input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != zero) {
i${K} = (const int8_t*) ((uintptr_t) i${K} + input_offset);
}
input = (const int8_t**) ((uintptr_t) input + input_stride);
size_t c = channels;
const void* w = weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 4):
int32x4_t vacc${ABC[C:C+4]} = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
const int8x8_t vi${K}x${ABC[C:C+8]} = vld1_s8(i${K}); i${K} += 8;
const int8x8_t vk${K}x${ABC[C:C+8]} = vld1_s8(w); w = (const void*) ((const int8_t*) w + 8);
$if K == 0:
$for C in range(0, CHANNEL_TILE, 8):
int16x8_t vprod${ABC[C:C+8]} = vmull_s8(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$elif K % 2 == 0 or K + 1 == KERNEL_TILE or not MLA:
$for C in range(0, CHANNEL_TILE, 8):
vprod${ABC[C:C+8]} = vmull_s8(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$else:
$for C in range(0, CHANNEL_TILE, 8):
vprod${ABC[C:C+8]} = vmlal_s8(vprod${ABC[C:C+8]}, vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$if not MLA or K % 2 == 1 or K + 1 == KERNEL_TILE:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+4]} = vaddw_s16(vacc${ABC[C:C+4]}, vget_low_s16(vprod${ABC[C:C+8]}));
vacc${ABC[C+4:C+8]} = vaddw_s16(vacc${ABC[C+4:C+8]}, vget_high_s16(vprod${ABC[C:C+8]}));
$if REQUANTIZATION == "GEMMLOWP":
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vqrdmulhq_s32(vacc${ABC[C:C+4]}, vmultiplier);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vsraq_n_s32(vacc${ABC[C:C+4]}, vbicq_s32(vacc${ABC[C:C+4]}, vzero_shift_mask), 31);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vrshlq_s32(vacc${ABC[C:C+4]}, vright_shift);
$elif REQUANTIZATION == "RNDNU":
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vshlq_s32(vacc${ABC[C:C+4]}, vright_pre_shift);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vqdmulhq_s32(vacc${ABC[C:C+4]}, vmultiplier);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vrshlq_s32(vacc${ABC[C:C+4]}, vright_post_shift);
$elif REQUANTIZATION == "FP32":
$for C in range(0, CHANNEL_TILE, 4):
float32x4_t vfpacc${ABC[C:C+4]} = vcvtq_f32_s32(vacc${ABC[C:C+4]});
$if DATATYPE == "QC8":
$for C in range(0, CHANNEL_TILE, 4):
const float32x4_t vscale${ABC[C:C+4]} = vld1q_f32((const float*) w); w = (const void*) ((const float*) w + 4);
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = vmulq_f32(vfpacc${ABC[C:C+4]}, vscale${ABC[C:C+4]});
$else:
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = vmulq_f32(vfpacc${ABC[C:C+4]}, vscale);
$if ARMV8:
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vcvtnq_s32_f32(vfpacc${ABC[C:C+4]});
$else:
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = vmaxq_f32(vfpacc${ABC[C:C+4]}, voutput_min_less_zero_point);
$for C in range(0, CHANNEL_TILE, 4):
vfpacc${ABC[C:C+4]} = vminq_f32(vfpacc${ABC[C:C+4]}, voutput_max_less_zero_point);
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[C:C+4]}, vmagic_bias));
$for C in range(0, CHANNEL_TILE, 4):
vacc${ABC[C:C+4]} = vsubq_s32(vacc${ABC[C:C+4]}, vmagic_bias_less_zero_point);
#if XNN_ARCH_ARM64
$if REQUANTIZATION == "FP32" and not ARMV8:
$for C in range(0, CHANNEL_TILE, 8):
const int16x8_t vacc${ABC[C:C+8]} = vuzp1q_s16(vreinterpretq_s16_s32(vacc${ABC[C:C+4]}), vreinterpretq_s16_s32(vacc${ABC[C+4:C+8]}));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
int8x16_t vout${ABC[C:C+16]} = vuzp1q_s8(vreinterpretq_s8_s16(vacc${ABC[C:C+8]}), vreinterpretq_s8_s16(vacc${ABC[C+8:C+16]}));
$else:
int8x8_t vout${ABC[C:C+8]} = vmovn_s16(vacc${ABC[C:C+8]});
$else:
$for C in range(0, CHANNEL_TILE, 8):
const int16x8_t vacc${ABC[C:C+8]} = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc${ABC[C:C+4]}), vacc${ABC[C+4:C+8]}), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
int8x16_t vout${ABC[C:C+16]} = vqmovn_high_s16(vqmovn_s16(vacc${ABC[C:C+8]}), vacc${ABC[C+8:C+16]});
$else:
int8x8_t vout${ABC[C:C+8]} = vqmovn_s16(vacc${ABC[C:C+8]});
#else
$if REQUANTIZATION == "FP32" and not ARMV8:
$for C in range(0, CHANNEL_TILE, 8):
const int16x8_t vacc${ABC[C:C+8]} = vcombine_s16(vmovn_s32(vacc${ABC[C:C+4]}), vmovn_s32(vacc${ABC[C+4:C+8]}));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
int8x16_t vout${ABC[C:C+16]} = vcombine_s8(vmovn_s16(vacc${ABC[C:C+8]}), vmovn_s16(vacc${ABC[C+8:C+16]}));
$else:
int8x8_t vout${ABC[C:C+8]} = vmovn_s16(vacc${ABC[C:C+8]});
$else:
$for C in range(0, CHANNEL_TILE, 8):
const int16x8_t vacc${ABC[C:C+8]} = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc${ABC[C:C+4]}), vqmovn_s32(vacc${ABC[C+4:C+8]})), voutput_zero_point);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
int8x16_t vout${ABC[C:C+16]} = vcombine_s8(vqmovn_s16(vacc${ABC[C:C+8]}), vqmovn_s16(vacc${ABC[C+8:C+16]}));
$else:
int8x8_t vout${ABC[C:C+8]} = vqmovn_s16(vacc${ABC[C:C+8]});
#endif
$if REQUANTIZATION != "FP32" or ARMV8:
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = vmaxq_s8(vout${ABC[C:C+16]}, voutput_min);
$else:
$if CHANNEL_TILE == 8:
vout${ABC[C:C+8]} = vmax_s8(vout${ABC[C:C+8]}, voutput_min);
$else:
vout${ABC[C:C+8]} = vmax_s8(vout${ABC[C:C+8]}, vget_low_s8(voutput_min));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vout${ABC[C:C+16]} = vminq_s8(vout${ABC[C:C+16]}, voutput_max);
$else:
$if CHANNEL_TILE == 8:
vout${ABC[C:C+8]} = vmin_s8(vout${ABC[C:C+8]}, voutput_max);
$else:
vout${ABC[C:C+8]} = vmin_s8(vout${ABC[C:C+8]}, vget_low_s8(voutput_max));
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
vst1q_s8(output, vout${ABC[C:C+16]}); output += 16;
$else:
vst1_s8(output, vout${ABC[C:C+8]}); output += 8;
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE > 8:
const int8_t* k = (const int8_t*) ((const int32_t*) w + ${CHANNEL_TILE});
${"do " if CHANNEL_TILE > 8 else ""}{
int32x4_t vacc${ABC[0:4]} = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
int32x4_t vacc${ABC[4:8]} = vld1q_s32(w); w = (const void*) ((const int32_t*) w + 4);
$for K in range(KERNEL_TILE):
$if CHANNEL_TILE > 8:
const int8x8_t vi${K}x${ABC[0:8]} = vld1_s8(i${K}); i${K} += 8;
$else:
const int8x8_t vi${K}x${ABC[0:8]} = vld1_s8(i${K});
$if CHANNEL_TILE > 8:
$if K == 0:
const int8x8_t vk${K}x${ABC[0:8]} = vld1_s8(k); k += 8;
$else:
const int8x8_t vk${K}x${ABC[0:8]} = vld1_s8((const void*) (k + ${K * CHANNEL_TILE - 8}));
$else:
$if K == 0:
const int8x8_t vk${K}x${ABC[0:8]} = vld1_s8(w);
$else:
const int8x8_t vk${K}x${ABC[0:8]} = vld1_s8((const void*) ((const int8_t*) w + ${K * CHANNEL_TILE}));
$if K == 0:
int16x8_t vprod${ABC[0:8]} = vmull_s8(vi${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]});
$elif K % 2 == 0 or K + 1 == KERNEL_TILE or not MLA:
vprod${ABC[0:8]} = vmull_s8(vi${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]});
$else:
vprod${ABC[0:8]} = vmlal_s8(vprod${ABC[0:8]}, vi${K}x${ABC[0:8]}, vk${K}x${ABC[0:8]});
$if not MLA or K % 2 == 1 or K + 1 == KERNEL_TILE:
vacc${ABC[0:4]} = vaddw_s16(vacc${ABC[0:4]}, vget_low_s16(vprod${ABC[0:8]}));
vacc${ABC[4:8]} = vaddw_s16(vacc${ABC[4:8]}, vget_high_s16(vprod${ABC[0:8]}));
$if REQUANTIZATION == "GEMMLOWP":
vacc${ABC[0:4]} = vqrdmulhq_s32(vacc${ABC[0:4]}, vmultiplier);
vacc${ABC[4:8]} = vqrdmulhq_s32(vacc${ABC[4:8]}, vmultiplier);
vacc${ABC[0:4]} = vsraq_n_s32(vacc${ABC[0:4]}, vbicq_s32(vacc${ABC[0:4]}, vzero_shift_mask), 31);
vacc${ABC[4:8]} = vsraq_n_s32(vacc${ABC[4:8]}, vbicq_s32(vacc${ABC[4:8]}, vzero_shift_mask), 31);
vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vright_shift);
vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vright_shift);
$elif REQUANTIZATION == "RNDNU":
vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vright_pre_shift);
vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vright_pre_shift);
vacc${ABC[0:4]} = vqdmulhq_s32(vacc${ABC[0:4]}, vmultiplier);
vacc${ABC[4:8]} = vqdmulhq_s32(vacc${ABC[4:8]}, vmultiplier);
vacc${ABC[0:4]} = vrshlq_s32(vacc${ABC[0:4]}, vright_post_shift);
vacc${ABC[4:8]} = vrshlq_s32(vacc${ABC[4:8]}, vright_post_shift);
$elif REQUANTIZATION == "FP32":
float32x4_t vfpacc${ABC[0:4]} = vcvtq_f32_s32(vacc${ABC[0:4]});
float32x4_t vfpacc${ABC[4:8]} = vcvtq_f32_s32(vacc${ABC[4:8]});
$if DATATYPE == "QC8":
const float32x4_t vscale${ABC[0:4]} = vld1q_f32((const float*) ((uintptr_t) w + ${CHANNEL_TILE - 8} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(int8_t)));
const float32x4_t vscale${ABC[4:8]} = vld1q_f32((const float*) ((uintptr_t) w + ${CHANNEL_TILE - 8} * sizeof(int32_t) + ${CHANNEL_TILE * KERNEL_TILE} * sizeof(int8_t) + 4 * sizeof(float)));
vfpacc${ABC[0:4]} = vmulq_f32(vfpacc${ABC[0:4]}, vscale${ABC[0:4]});
vfpacc${ABC[4:8]} = vmulq_f32(vfpacc${ABC[4:8]}, vscale${ABC[4:8]});
$else:
vfpacc${ABC[0:4]} = vmulq_f32(vfpacc${ABC[0:4]}, vscale);
vfpacc${ABC[4:8]} = vmulq_f32(vfpacc${ABC[4:8]}, vscale);
$if ARMV8:
vacc${ABC[0:4]} = vcvtnq_s32_f32(vfpacc${ABC[0:4]});
vacc${ABC[4:8]} = vcvtnq_s32_f32(vfpacc${ABC[4:8]});
$else:
vfpacc${ABC[0:4]} = vmaxq_f32(vfpacc${ABC[0:4]}, voutput_min_less_zero_point);
vfpacc${ABC[4:8]} = vmaxq_f32(vfpacc${ABC[4:8]}, voutput_min_less_zero_point);
vfpacc${ABC[0:4]} = vminq_f32(vfpacc${ABC[0:4]}, voutput_max_less_zero_point);
vfpacc${ABC[4:8]} = vminq_f32(vfpacc${ABC[4:8]}, voutput_max_less_zero_point);
vacc${ABC[0:4]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[0:4]}, vmagic_bias));
vacc${ABC[4:8]} = vreinterpretq_s32_f32(vaddq_f32(vfpacc${ABC[4:8]}, vmagic_bias));
vacc${ABC[0:4]} = vsubq_s32(vacc${ABC[0:4]}, vmagic_bias_less_zero_point);
vacc${ABC[4:8]} = vsubq_s32(vacc${ABC[4:8]}, vmagic_bias_less_zero_point);
#if XNN_ARCH_ARM64
$if REQUANTIZATION == "FP32" and not ARMV8:
const int16x8_t vacc${ABC[0:8]} = vuzp1q_s16(vreinterpretq_s16_s32(vacc${ABC[0:4]}), vreinterpretq_s16_s32(vacc${ABC[4:8]}));
int8x8_t vout${ABC[0:8]} = vmovn_s16(vacc${ABC[0:8]});
$else:
const int16x8_t vacc${ABC[0:8]} = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc${ABC[0:4]}), vacc${ABC[4:8]}), voutput_zero_point);
int8x8_t vout${ABC[0:8]} = vqmovn_s16(vacc${ABC[0:8]});
#else
$if REQUANTIZATION == "FP32" and not ARMV8:
const int16x8_t vacc${ABC[0:8]} = vcombine_s16(vmovn_s32(vacc${ABC[0:4]}), vmovn_s32(vacc${ABC[4:8]}));
int8x8_t vout${ABC[0:8]} = vmovn_s16(vacc${ABC[0:8]});
$else:
const int16x8_t vacc${ABC[0:8]} = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc${ABC[0:4]}), vqmovn_s32(vacc${ABC[4:8]})), voutput_zero_point);
int8x8_t vout${ABC[0:8]} = vqmovn_s16(vacc${ABC[0:8]});
#endif
$if REQUANTIZATION != "FP32" or ARMV8:
$if CHANNEL_TILE == 8:
vout${ABC[0:8]} = vmax_s8(vout${ABC[0:8]}, voutput_min);
vout${ABC[0:8]} = vmin_s8(vout${ABC[0:8]}, voutput_max);
$else:
vout${ABC[0:8]} = vmax_s8(vout${ABC[0:8]}, vget_low_s8(voutput_min));
vout${ABC[0:8]} = vmin_s8(vout${ABC[0:8]}, vget_low_s8(voutput_max));
$if CHANNEL_TILE > 8:
if XNN_LIKELY(c >= 8) {
vst1_s8(output, vout${ABC[0:8]}); output += 8;
c -= 8;
} else {
if (c & 4) {
vst1_lane_u32(__builtin_assume_aligned(output, 1), vreinterpret_u32_s8(vout${ABC[0:8]}), 0); output += 4;
vout${ABC[0:8]} = vext_s8(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
}
if (c & 2) {
vst1_lane_u16(__builtin_assume_aligned(output, 1), vreinterpret_u16_s8(vout${ABC[0:8]}), 0); output += 2;
vout${ABC[0:8]} = vext_s8(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
}
if (c & 1) {
vst1_lane_s8(output, vout${ABC[0:8]}, 0); output += 1;
}
c = 0;
}
$else:
if (c & 4) {
vst1_lane_u32(__builtin_assume_aligned(output, 1), vreinterpret_u32_s8(vout${ABC[0:8]}), 0); output += 4;
vout${ABC[0:8]} = vext_s8(vout${ABC[0:8]}, vout${ABC[0:8]}, 4);
}
if (c & 2) {
vst1_lane_u16(__builtin_assume_aligned(output, 1), vreinterpret_u16_s8(vout${ABC[0:8]}), 0); output += 2;
vout${ABC[0:8]} = vext_s8(vout${ABC[0:8]}, vout${ABC[0:8]}, 2);
}
if (c & 1) {
vst1_lane_s8(output, vout${ABC[0:8]}, 0); output += 1;
}
}${" while (c != 0);" if CHANNEL_TILE > 8 else ""}
}
output = (int8_t*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}