blob: 642bddf0dafe513a0a75855308b7a3c7246cf854 [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cfloat>
#include <chrono>
#include <cmath>
#include <functional>
#include <mutex>
#include <random>
#include <vector>
#include <cpuinfo.h>
#include <benchmark/benchmark.h>
#ifdef BENCHMARK_RUY
#include "tensorflow/lite/experimental/ruy/ruy.h"
#endif // BENCHMARK_RUY
#include "bench/gemm.h"
#include "bench/utils.h"
#include <xnnpack/AlignedAllocator.h>
#include <xnnpack/common.h>
#include <xnnpack/gemm.h>
#include <xnnpack/pack.h>
#include <xnnpack/packx.h>
#include <xnnpack/params-init.h>
#include <xnnpack/params.h>
#include <xnnpack/ppmm.h>
static void GEMMBenchmark(benchmark::State& state,
xnn_f32_gemm_ukernel_function gemm,
size_t mr, size_t nr, size_t kr, size_t sr,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (!cpuinfo_initialize()) {
state.SkipWithError("cpuinfo initialization failed");
return;
}
if (isa_check && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
const size_t kc_stride = benchmark::utils::RoundUp(kc, kr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::vector<float> k(nc * kc);
std::generate(k.begin(), k.end(), std::ref(f32rng));
std::vector<float> b(nc);
std::generate(b.begin(), b.end(), std::ref(f32rng));
const size_t w_elements = nc_stride * kc_stride + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
std::vector<float, AlignedAllocator<float, 32>> w(w_elements * num_buffers);
std::fill(w.begin(), w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1 /* groups */, nc, kc, nr, kr, sr, k.data(), b.data(), w.data());
std::vector<float> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), std::nanf(""));
xnn_f32_output_params output_params =
xnn_init_f32_output_params(-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
gemm(
mb, nc, kc * sizeof(float),
a.data() + m * kc, kc * sizeof(float),
w.data() + buffer_index * nc_stride * (kc_stride + 1),
c.data() + (buffer_index * mc + m) * nc, nc * sizeof(float), nr * sizeof(float),
&output_params);
}
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
static void PPMM1PBenchmark(benchmark::State& state,
xnn_f32_ppmm_ukernel_function ppmm,
xnn_x32_packx_ukernel_function packx,
size_t mr, size_t nr,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (!cpuinfo_initialize()) {
state.SkipWithError("cpuinfo initialization failed");
return;
}
if (isa_check && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::vector<float> k(nc * kc);
std::generate(k.begin(), k.end(), std::ref(f32rng));
std::vector<float> b(nc);
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::vector<uint32_t, AlignedAllocator<uint32_t, 32>> t(mr * kc);
const size_t w_elements = nc_stride * kc + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
std::vector<float, AlignedAllocator<float, 32>> w(w_elements * num_buffers);
std::fill(w.begin(), w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1 /* groups */, nc, kc, nr, 1 /* kr */, 1 /* sr */, k.data(), b.data(), w.data());
std::vector<float> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), std::nanf(""));
xnn_f32_output_params output_params =
xnn_init_f32_output_params(-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
packx(mb, kc, reinterpret_cast<const uint32_t*>(a.data() + m * kc), kc, t.data());
ppmm(
mb, nc, kc * sizeof(float),
reinterpret_cast<const float*>(t.data()),
w.data() + nc_stride * buffer_index * (kc + 1),
c.data() + (mc * buffer_index + m) * nc, nc * sizeof(float), nr * sizeof(float),
&output_params);
}
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
static void PPMM2PBenchmark(benchmark::State& state,
xnn_f32_ppmm_ukernel_function ppmm,
xnn_x32_packx_ukernel_function packx,
size_t mr, size_t nr,
benchmark::utils::IsaCheckFunction isa_check = nullptr)
{
if (!cpuinfo_initialize()) {
state.SkipWithError("cpuinfo initialization failed");
return;
}
if (isa_check && !isa_check(state)) {
return;
}
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t mc_stride = benchmark::utils::RoundUp(mc, mr);
const size_t nc_stride = benchmark::utils::RoundUp(nc, nr);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::vector<float> k(nc * kc);
std::generate(k.begin(), k.end(), std::ref(f32rng));
std::vector<float> b(nc);
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::vector<uint32_t, AlignedAllocator<uint32_t, 32>> t(mc_stride * kc);
const size_t w_elements = nc_stride * kc + nc_stride;
const size_t c_elements = mc * nc;
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (w_elements + c_elements));
std::vector<float, AlignedAllocator<float, 32>> w(w_elements * num_buffers);
std::fill(w.begin(), w.end(), 0.0f);
xnn_pack_f32_gemm_goi_w(1 /* groups */, nc, kc, nr, 1 /* kr */, 1 /* sr */, k.data(), b.data(), w.data());
std::vector<float> c(c_elements * num_buffers);
std::fill(c.begin(), c.end(), std::nanf(""));
xnn_f32_output_params output_params =
xnn_init_f32_output_params(-std::numeric_limits<float>::infinity(), +std::numeric_limits<float>::infinity());
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - W is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
packx(mb, kc, reinterpret_cast<const uint32_t*>(a.data() + m * kc), kc, t.data() + m * kc);
}
for (uint32_t m = 0; m < mc; m += mr) {
const uint32_t mb = min(mc - m, mr);
ppmm(
mb, nc, kc * sizeof(float),
reinterpret_cast<const float*>(t.data() + m * kc),
w.data() + nc_stride * buffer_index * (kc + 1),
c.data() + (mc * buffer_index + m) * nc, nc * sizeof(float), nr * sizeof(float),
&output_params);
}
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
#ifdef BENCHMARK_RUY
static void RuyBenchmark(benchmark::State& state, uint32_t threads)
{
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
const size_t mc = state.range(0);
const size_t nc = state.range(1);
const size_t kc = state.range(2);
const size_t num_buffers = 1 +
benchmark::utils::DivideRoundUp<size_t>(benchmark::utils::GetMaxCacheSize(),
sizeof(float) * (nc * (mc + kc + 1)));
std::vector<float> a(mc * kc);
std::generate(a.begin(), a.end(), std::ref(f32rng));
std::vector<float> k(num_buffers * nc * kc);
std::generate(k.begin(), k.end(), std::ref(f32rng));
std::vector<float> b(num_buffers * nc);
std::generate(b.begin(), b.end(), std::ref(f32rng));
std::vector<float> c(num_buffers * nc * mc);
std::fill(c.begin(), c.end(), std::nanf(""));
// Note: context must be static to avoid the cost of re-creating it for each benchmark.
static ruy::Context context;
context.max_num_threads = threads;
ruy::Matrix<float> ruy_a;
ruy::MakeSimpleLayout(nc, kc, ruy::Order::kRowMajor, &ruy_a.layout);
ruy::Matrix<float> ruy_b;
ruy::MakeSimpleLayout(kc, mc, ruy::Order::kColMajor, &ruy_b.layout);
ruy_b.data = a.data();
ruy::Matrix<float> ruy_c;
ruy::MakeSimpleLayout(nc, mc, ruy::Order::kColMajor, &ruy_c.layout);
ruy::BasicSpec<float, float> spec;
// ruy::Context uses deferred initialization, which affects percieved GEMM performance. Initialization happens during
// the first GEMM calls, and per Benoit Jacob it takes up to ~250 milliseconds for performance to stabilize.
// Thus, on the first benchmark, we compute GEMM for 500 milliseconds (to be safe) without recording performance, and
// keep the ruy::Context object initialized (by being static) between subsequent benchmarks.
static std::once_flag warmup;
std::call_once(warmup, [&](){
auto start = std::chrono::steady_clock::now();
do {
ruy_a.data = k.data();
ruy_c.data = c.data();
spec.bias = b.data();
ruy::Mul<ruy::kAllPaths>(ruy_a, ruy_b, spec, &context, &ruy_c);
} while (std::chrono::duration<double>(std::chrono::steady_clock::now() - start).count() < 0.5);
});
size_t buffer_index = 0;
for (auto _ : state) {
// Use circular buffers (exceeding cache size) and prefetch to control cache state:
// - A is always in L1 cache (if fits, otherwise L2, L3, etc)
// - K is not in cache (for any cache level)
// - B is not in cache (for any cache level)
// - C is not in cache (for any cache level)
state.PauseTiming();
benchmark::utils::PrefetchToL1(a.data(), a.size() * sizeof(float));
buffer_index = (buffer_index + 1) % num_buffers;
state.ResumeTiming();
ruy_a.data = k.data() + buffer_index * nc * kc;
ruy_c.data = c.data() + buffer_index * mc * nc;
spec.bias = b.data() + buffer_index * nc;
ruy::Mul<ruy::kAllPaths>(ruy_a, ruy_b, spec, &context, &ruy_c);
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
state.counters["FLOPS"] = benchmark::Counter(
uint64_t(state.iterations()) * 2 * mc * nc * kc, benchmark::Counter::kIsRate);
}
static void ruy_st(benchmark::State& state, const char* net)
{
RuyBenchmark(state, 1);
}
#endif // BENCHMARK_RUY
#if XNN_ARCH_ARM64 && XNN_ENABLE_ASSEMBLY
static void f32_gemm_1x12__aarch64_neonfma_cortex_a53(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x12__aarch64_neonfma_cortex_a53, 1, 12, 1, 1);
}
static void f32_gemm_1x8__aarch64_neonfma_cortex_a53(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__aarch64_neonfma_cortex_a53, 1, 8, 1, 1);
}
static void f32_gemm_1x8__aarch64_neonfma_cortex_a57(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__aarch64_neonfma_cortex_a57, 1, 8, 1, 1);
}
static void f32_gemm_1x8__aarch64_neonfma_cortex_a75(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__aarch64_neonfma_cortex_a75, 1, 8, 1, 1);
}
static void f32_gemm_4x12__aarch64_neonfma_cortex_a53(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x12__aarch64_neonfma_cortex_a53, 4, 12, 1, 1);
}
static void f32_gemm_4x8__aarch64_neonfma_cortex_a53(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch64_neonfma_cortex_a53, 4, 8, 1, 1);
}
static void f32_gemm_4x8__aarch64_neonfma_cortex_a57(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch64_neonfma_cortex_a57, 4, 8, 1, 1);
}
static void f32_gemm_4x8__aarch64_neonfma_cortex_a75(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch64_neonfma_cortex_a75, 4, 8, 1, 1);
}
static void f32_gemm_4x8__aarch64_neonfma_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch64_neonfma_ld64, 4, 8, 1, 1);
}
static void f32_gemm_4x8__aarch64_neonfma_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch64_neonfma_ld128, 4, 8, 1, 1);
}
static void f32_gemm_5x8__aarch64_neonfma_cortex_a57(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x8__aarch64_neonfma_cortex_a57, 5, 8, 1, 1);
}
static void f32_gemm_5x8__aarch64_neonfma_cortex_a75(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x8__aarch64_neonfma_cortex_a75, 5, 8, 1, 1);
}
static void f32_gemm_6x8__aarch64_neonfma_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__aarch64_neonfma_ld64, 6, 8, 1, 1);
}
static void f32_gemm_6x8__aarch64_neonfma_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__aarch64_neonfma_ld128, 6, 8, 1, 1);
}
static void f32_gemm_6x8__aarch64_neonfma_cortex_a53(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__aarch64_neonfma_cortex_a53, 6, 8, 1, 1);
}
static void f32_gemm_6x8__aarch64_neonfma_cortex_a73(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__aarch64_neonfma_cortex_a73, 6, 8, 1, 1);
}
static void f32_gemm_6x8__aarch64_neonfma_cortex_a57(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__aarch64_neonfma_cortex_a57, 6, 8, 1, 1);
}
static void f32_gemm_6x8__aarch64_neonfma_cortex_a75(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__aarch64_neonfma_cortex_a75, 6, 8, 1, 1);
}
static void f32_gemm_1x8__neonfma_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__neonfma_lane_ld64, 1, 8, 1, 1);
}
static void f32_gemm_4x8__neonfma_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__neonfma_lane_ld64, 4, 8, 1, 1);
}
static void f32_gemm_4x8__neonfma_lane_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__neonfma_lane_ld128, 4, 8, 1, 1);
}
static void f32_gemm_5x8__neonfma_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x8__neonfma_lane_ld64, 5, 8, 1, 1);
}
static void f32_gemm_6x8__neonfma_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__neonfma_lane_ld64, 6, 8, 1, 1);
}
static void f32_gemm_6x8__neonfma_lane_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__neonfma_lane_ld128, 6, 8, 1, 1);
}
BENCHMARK_GEMM(f32_gemm_1x12__aarch64_neonfma_cortex_a53)
BENCHMARK_GEMM(f32_gemm_1x8__aarch64_neonfma_cortex_a53)
BENCHMARK_GEMM(f32_gemm_1x8__aarch64_neonfma_cortex_a57)
BENCHMARK_GEMM(f32_gemm_1x8__aarch64_neonfma_cortex_a75)
BENCHMARK_GEMM(f32_gemm_4x12__aarch64_neonfma_cortex_a53)
BENCHMARK_GEMM(f32_gemm_4x8__aarch64_neonfma_cortex_a53)
BENCHMARK_GEMM(f32_gemm_4x8__aarch64_neonfma_cortex_a57)
BENCHMARK_GEMM(f32_gemm_4x8__aarch64_neonfma_cortex_a75)
BENCHMARK_GEMM(f32_gemm_4x8__aarch64_neonfma_ld128)
BENCHMARK_GEMM(f32_gemm_4x8__aarch64_neonfma_ld64)
BENCHMARK_GEMM(f32_gemm_5x8__aarch64_neonfma_cortex_a57)
BENCHMARK_GEMM(f32_gemm_5x8__aarch64_neonfma_cortex_a75)
BENCHMARK_GEMM(f32_gemm_6x8__aarch64_neonfma_cortex_a53)
BENCHMARK_GEMM(f32_gemm_6x8__aarch64_neonfma_cortex_a73)
BENCHMARK_GEMM(f32_gemm_6x8__aarch64_neonfma_cortex_a57)
BENCHMARK_GEMM(f32_gemm_6x8__aarch64_neonfma_cortex_a75)
BENCHMARK_GEMM(f32_gemm_6x8__aarch64_neonfma_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__aarch64_neonfma_ld128)
BENCHMARK_GEMM(f32_gemm_1x8__neonfma_lane_ld64)
BENCHMARK_GEMM(f32_gemm_4x8__neonfma_lane_ld64)
BENCHMARK_GEMM(f32_gemm_4x8__neonfma_lane_ld128)
BENCHMARK_GEMM(f32_gemm_5x8__neonfma_lane_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__neonfma_lane_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__neonfma_lane_ld128)
#endif // XNN_ARCH_ARM64
#if XNN_ARCH_ARM && XNN_ENABLE_ASSEMBLY
static void f32_gemm_4x8__aarch32_neon_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch32_neon_ld64, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_4x8__aarch32_neon_cortex_a53(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch32_neon_cortex_a53, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_4x8__aarch32_neon_cortex_a75(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch32_neon_cortex_a75, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_4x8__aarch32_neon_pld_cortex_a75(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__aarch32_neon_pld_cortex_a75, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
BENCHMARK_GEMM(f32_gemm_4x8__aarch32_neon_ld64)
BENCHMARK_GEMM(f32_gemm_4x8__aarch32_neon_cortex_a53)
BENCHMARK_GEMM(f32_gemm_4x8__aarch32_neon_cortex_a75)
BENCHMARK_GEMM(f32_gemm_4x8__aarch32_neon_pld_cortex_a75)
#endif // XNN_ARCH_ARM
#if XNN_ARCH_ARM || XNN_ARCH_ARM64
static void f32_gemm_1x8__neon_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__neon_lane_ld64, 1, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_4x8__neon_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__neon_lane_ld64, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_4x8__neon_lane_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__neon_lane_ld128, 4, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_5x8__neon_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x8__neon_lane_ld64, 5, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_6x8__neon_lane_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__neon_lane_ld64, 6, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_6x8__neon_lane_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__neon_lane_ld128, 6, 8, 1, 1, benchmark::utils::CheckNEON);
}
static void f32_gemm_1x8__neonfma_dup_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__neonfma_dup_ld64, 1, 8, 1, 1, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_4x8__neonfma_dup_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__neonfma_dup_ld64, 4, 8, 1, 1, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_4x8__neonfma_dup_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__neonfma_dup_ld128, 4, 8, 1, 1, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_6x8__neonfma_dup_ld64(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__neonfma_dup_ld64, 6, 8, 1, 1, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_6x8__neonfma_dup_ld128(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__neonfma_dup_ld128, 6, 8, 1, 1, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_1x8s4__neon(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8s4__neon, 1, 8, 1, 4, benchmark::utils::CheckNEON);
}
static void f32_gemm_1x8s4__neonfma(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8s4__neonfma, 1, 8, 1, 4, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_4x8s4__neon(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8s4__neon, 4, 8, 1, 4, benchmark::utils::CheckNEON);
}
static void f32_gemm_4x8s4__neonfma(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8s4__neonfma, 4, 8, 1, 4, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_6x8s4__neon(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8s4__neon, 6, 8, 1, 4, benchmark::utils::CheckNEON);
}
static void f32_gemm_6x8s4__neonfma(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8s4__neonfma, 6, 8, 1, 4, benchmark::utils::CheckNEONFMA);
}
static void f32_gemm_8x8s4__neon(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_8x8s4__neon, 8, 8, 1, 4, benchmark::utils::CheckNEON);
}
static void f32_gemm_8x8s4__neonfma(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_8x8s4__neonfma, 8, 8, 1, 4, benchmark::utils::CheckNEONFMA);
}
static void f32_ppmm_4x8_unipass__neonfma(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_4x8__neonfma, xnn_x32_packx_ukernel_4x__neon_st4, 4, 8, benchmark::utils::CheckNEONFMA);
}
static void f32_ppmm_4x8_twopass__neonfma(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_4x8__neonfma, xnn_x32_packx_ukernel_4x__neon_st4, 4, 8, benchmark::utils::CheckNEONFMA);
}
BENCHMARK_GEMM(f32_gemm_1x8__neon_lane_ld64)
BENCHMARK_GEMM(f32_gemm_4x8__neon_lane_ld64)
BENCHMARK_GEMM(f32_gemm_4x8__neon_lane_ld128)
BENCHMARK_GEMM(f32_gemm_5x8__neon_lane_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__neon_lane_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__neon_lane_ld128)
BENCHMARK_GEMM(f32_gemm_1x8__neonfma_dup_ld64)
BENCHMARK_GEMM(f32_gemm_4x8__neonfma_dup_ld128)
BENCHMARK_GEMM(f32_gemm_4x8__neonfma_dup_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__neonfma_dup_ld64)
BENCHMARK_GEMM(f32_gemm_6x8__neonfma_dup_ld128)
BENCHMARK_GEMM(f32_gemm_1x8s4__neon)
BENCHMARK_GEMM(f32_gemm_1x8s4__neonfma)
BENCHMARK_GEMM(f32_gemm_4x8s4__neon)
BENCHMARK_GEMM(f32_gemm_4x8s4__neonfma)
BENCHMARK_GEMM(f32_gemm_6x8s4__neon)
BENCHMARK_GEMM(f32_gemm_6x8s4__neonfma)
BENCHMARK_GEMM(f32_gemm_8x8s4__neon)
BENCHMARK_GEMM(f32_gemm_8x8s4__neonfma)
BENCHMARK_GEMM(f32_ppmm_4x8_unipass__neonfma)
BENCHMARK_GEMM(f32_ppmm_4x8_twopass__neonfma)
#endif // XNN_ARCH_ARM || XNN_ARCH_ARM64
#if XNN_ARCH_X86 || XNN_ARCH_X86_64
static void f32_gemm_1x8__sse_load1(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__sse_load1, 1, 8, 1, 1);
}
static void f32_gemm_4x8__sse_load1(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__sse_load1, 4, 8, 1, 1);
}
static void f32_gemm_1x8__sse_dup(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__sse_dup, 1, 8, 1, 1);
}
static void f32_gemm_4x8__sse_dup(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__sse_dup, 4, 8, 1, 1);
}
static void f32_gemm_1x8s4__sse(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8s4__sse, 1, 8, 1, 4);
}
static void f32_gemm_4x8s4__sse(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8s4__sse, 4, 8, 1, 4);
}
static void f32_ppmm_4x8_unipass__sse(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_4x8__sse, xnn_x32_packx_ukernel_4x__sse, 4, 8);
}
static void f32_ppmm_4x8_twopass__sse(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_4x8__sse, xnn_x32_packx_ukernel_4x__sse, 4, 8);
}
static void f32_gemm_1x8__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__avx_broadcast, 1, 8, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_4x8__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__avx_broadcast, 4, 8, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_5x8__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x8__avx_broadcast, 5, 8, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_6x8__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__avx_broadcast, 6, 8, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_7x8__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_7x8__avx_broadcast, 7, 8, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_1x16__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x16__avx_broadcast, 1, 16, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_3x16__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_3x16__avx_broadcast, 4, 16, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_4x16__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x16__avx_broadcast, 4, 16, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_5x16__avx_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x16__avx_broadcast, 5, 16, 1, 1, benchmark::utils::CheckAVX);
}
static void f32_gemm_1x8__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x8__fma3_broadcast, 1, 8, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_4x8__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__fma3_broadcast, 4, 8, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_5x8__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x8__fma3_broadcast, 5, 8, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_6x8__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__fma3_broadcast, 6, 8, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_7x8__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_7x8__fma3_broadcast, 7, 8, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_8x8__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_8x8__fma3_broadcast, 8, 8, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_1x16__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x16__fma3_broadcast, 1, 16, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_3x16__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_3x16__fma3_broadcast, 4, 16, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_4x16__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x16__fma3_broadcast, 4, 16, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_5x16__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x16__fma3_broadcast, 5, 16, 1, 1, benchmark::utils::CheckFMA3);
}
static void f32_gemm_1x16s4__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x16s4__fma3_broadcast, 1, 16, 1, 4, benchmark::utils::CheckFMA3);
}
static void f32_gemm_3x16s4__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_3x16s4__fma3_broadcast, 4, 16, 1, 4, benchmark::utils::CheckFMA3);
}
static void f32_gemm_4x16s4__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x16s4__fma3_broadcast, 4, 16, 1, 4, benchmark::utils::CheckFMA3);
}
static void f32_gemm_5x16s4__fma3_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x16s4__fma3_broadcast, 5, 16, 1, 4, benchmark::utils::CheckFMA3);
}
static void f32_gemm_1x16__avx512f_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x16__avx512f_broadcast, 1, 16, 1, 1, benchmark::utils::CheckAVX512F);
}
static void f32_gemm_4x16__avx512f_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x16__avx512f_broadcast, 4, 16, 1, 1, benchmark::utils::CheckAVX512F);
}
static void f32_gemm_5x16__avx512f_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_5x16__avx512f_broadcast, 5, 16, 1, 1, benchmark::utils::CheckAVX512F);
}
static void f32_gemm_6x16__avx512f_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x16__avx512f_broadcast, 6, 16, 1, 1, benchmark::utils::CheckAVX512F);
}
static void f32_gemm_7x16__avx512f_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_7x16__avx512f_broadcast, 7, 16, 1, 1, benchmark::utils::CheckAVX512F);
}
static void f32_gemm_8x16__avx512f_broadcast(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_8x16__avx512f_broadcast, 8, 16, 1, 1, benchmark::utils::CheckAVX512F);
}
BENCHMARK_GEMM(f32_gemm_1x8__sse_load1)
BENCHMARK_GEMM(f32_gemm_4x8__sse_load1)
BENCHMARK_GEMM(f32_gemm_1x8__sse_dup)
BENCHMARK_GEMM(f32_gemm_4x8__sse_dup)
BENCHMARK_GEMM(f32_gemm_1x8s4__sse)
BENCHMARK_GEMM(f32_gemm_4x8s4__sse)
BENCHMARK_GEMM(f32_ppmm_4x8_unipass__sse)
BENCHMARK_GEMM(f32_ppmm_4x8_twopass__sse)
BENCHMARK_GEMM(f32_gemm_1x8__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_4x8__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_5x8__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_6x8__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_7x8__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_1x16__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_3x16__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_4x16__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_5x16__avx_broadcast)
BENCHMARK_GEMM(f32_gemm_1x8__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_4x8__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_5x8__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_6x8__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_7x8__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_8x8__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_1x16__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_3x16__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_4x16__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_5x16__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_1x16s4__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_3x16s4__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_4x16s4__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_5x16s4__fma3_broadcast)
BENCHMARK_GEMM(f32_gemm_1x16__avx512f_broadcast)
BENCHMARK_GEMM(f32_gemm_4x16__avx512f_broadcast)
BENCHMARK_GEMM(f32_gemm_5x16__avx512f_broadcast)
BENCHMARK_GEMM(f32_gemm_6x16__avx512f_broadcast)
BENCHMARK_GEMM(f32_gemm_7x16__avx512f_broadcast)
BENCHMARK_GEMM(f32_gemm_8x16__avx512f_broadcast)
#endif // XNN_ARCH_X86 || XNN_ARCH_X86_64
#if !XNN_ARCH_WASM && !XNN_ARCH_ASMJS
static void f32_gemm_4x8__psimd_loadsplat(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__psimd_loadsplat, 4, 8, 1, 1);
}
static void f32_gemm_6x8__psimd_loadsplat(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__psimd_loadsplat, 6, 8, 1, 1);
}
static void f32_gemm_4x8__psimd_splat(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8__psimd_splat, 4, 8, 1, 1);
}
static void f32_gemm_6x8__psimd_splat(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8__psimd_splat, 6, 8, 1, 1);
}
static void f32_gemm_4x8s4__psimd(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x8s4__psimd, 4, 8, 1, 4);
}
static void f32_gemm_6x8s4__psimd(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_6x8s4__psimd, 6, 8, 1, 4);
}
static void f32_ppmm_4x8_unipass__psimd(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_4x8__psimd, xnn_x32_packx_ukernel_4x__psimd, 4, 8);
}
static void f32_ppmm_4x8_twopass__psimd(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_4x8__psimd, xnn_x32_packx_ukernel_4x__psimd, 4, 8);
}
BENCHMARK_GEMM(f32_gemm_4x8__psimd_loadsplat)
BENCHMARK_GEMM(f32_gemm_6x8__psimd_loadsplat)
BENCHMARK_GEMM(f32_gemm_4x8__psimd_splat)
BENCHMARK_GEMM(f32_gemm_6x8__psimd_splat)
BENCHMARK_GEMM(f32_gemm_4x8s4__psimd)
BENCHMARK_GEMM(f32_gemm_6x8s4__psimd)
BENCHMARK_GEMM(f32_ppmm_4x8_unipass__psimd)
BENCHMARK_GEMM(f32_ppmm_4x8_twopass__psimd)
#endif // !XNN_ARCH_WASM && !XNN_ARCH_ASMJS
static void f32_gemm_1x4__scalar(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_1x4__scalar, 1, 4, 1, 1);
}
static void f32_gemm_2x4__scalar(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_2x4__scalar, 2, 4, 1, 1);
}
static void f32_gemm_4x4__scalar(benchmark::State& state, const char* net) {
GEMMBenchmark(state, xnn_f32_gemm_ukernel_4x4__scalar, 4, 4, 1, 1);
}
static void f32_ppmm_2x4_unipass__scalar(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_2x4__scalar, xnn_x32_packx_ukernel_2x__scalar, 2, 4);
}
static void f32_ppmm_4x2_unipass__scalar(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_4x2__scalar, xnn_x32_packx_ukernel_4x__scalar, 4, 2);
}
static void f32_ppmm_4x4_unipass__scalar(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_4x4__scalar, xnn_x32_packx_ukernel_4x__scalar, 4, 4);
}
static void f32_ppmm_3x3_unipass__scalar(benchmark::State& state, const char* net) {
PPMM1PBenchmark(state, xnn_f32_ppmm_ukernel_3x3__scalar, xnn_x32_packx_ukernel_3x__scalar, 3, 3);
}
static void f32_ppmm_2x4_twopass__scalar(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_2x4__scalar, xnn_x32_packx_ukernel_2x__scalar, 2, 4);
}
static void f32_ppmm_4x2_twopass__scalar(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_4x2__scalar, xnn_x32_packx_ukernel_4x__scalar, 4, 2);
}
static void f32_ppmm_4x4_twopass__scalar(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_4x4__scalar, xnn_x32_packx_ukernel_4x__scalar, 4, 4);
}
static void f32_ppmm_3x3_twopass__scalar(benchmark::State& state, const char* net) {
PPMM2PBenchmark(state, xnn_f32_ppmm_ukernel_3x3__scalar, xnn_x32_packx_ukernel_3x__scalar, 3, 3);
}
BENCHMARK_GEMM(f32_gemm_1x4__scalar)
BENCHMARK_GEMM(f32_gemm_2x4__scalar)
BENCHMARK_GEMM(f32_gemm_4x4__scalar)
BENCHMARK_GEMM(f32_ppmm_2x4_unipass__scalar)
BENCHMARK_GEMM(f32_ppmm_4x2_unipass__scalar)
BENCHMARK_GEMM(f32_ppmm_4x4_unipass__scalar)
BENCHMARK_GEMM(f32_ppmm_3x3_unipass__scalar)
BENCHMARK_GEMM(f32_ppmm_2x4_twopass__scalar)
BENCHMARK_GEMM(f32_ppmm_4x2_twopass__scalar)
BENCHMARK_GEMM(f32_ppmm_4x4_twopass__scalar)
BENCHMARK_GEMM(f32_ppmm_3x3_twopass__scalar)
#ifdef BENCHMARK_RUY
BENCHMARK_GEMM(ruy_st)
#endif // BENCHMARK_RUY
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif