blob: 67895d97e499d9407da9438c7d439db866abb9fb [file] [log] [blame]
// Copyright (c) Facebook, Inc. and its affiliates.
// All rights reserved.
//
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <algorithm>
#include <cmath>
#include <functional>
#include <random>
#include <vector>
#include <xnnpack.h>
#include <benchmark/benchmark.h>
#include "bench/utils.h"
static void channel_shuffle_x8(benchmark::State& state, const char* net) {
const size_t batch_size = static_cast<size_t>(state.range(0));
const size_t groups = static_cast<size_t>(state.range(1));
const size_t group_channels = static_cast<size_t>(state.range(2));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) + batch_size * groups * group_channels);
std::vector<uint8_t> output(batch_size * groups * group_channels);
std::generate(input.begin(), input.end(), std::ref(u8rng));
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t channel_shuffle_op = nullptr;
status = xnn_create_channel_shuffle_nc_x8(
groups, group_channels,
groups * group_channels /* input stride */,
groups * group_channels /* output stride */,
0 /* flags */, &channel_shuffle_op);
if (status != xnn_status_success || channel_shuffle_op == nullptr) {
state.SkipWithError("failed to create X8 Channel Shuffle operator");
return;
}
status = xnn_setup_channel_shuffle_nc_x8(
channel_shuffle_op,
batch_size,
input.data(), output.data(),
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to setup X8 Channel Shuffle operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(channel_shuffle_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run X8 Channel Shuffle operator");
return;
}
}
status = xnn_delete_operator(channel_shuffle_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete X8 Channel Shuffle operator");
return;
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
const size_t elements_per_iteration = batch_size * groups * group_channels;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(uint8_t);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void channel_shuffle_x32(benchmark::State& state, const char* net) {
const size_t batch_size = static_cast<size_t>(state.range(0));
const size_t groups = static_cast<size_t>(state.range(1));
const size_t group_channels = static_cast<size_t>(state.range(2));
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) + batch_size * groups * group_channels);
std::vector<float> output(batch_size * groups * group_channels);
std::generate(input.begin(), input.end(), std::ref(f32rng));
xnn_status status = xnn_initialize(nullptr /* allocator */);
if (status != xnn_status_success) {
state.SkipWithError("failed to initialize XNNPACK");
return;
}
xnn_operator_t channel_shuffle_op = nullptr;
status = xnn_create_channel_shuffle_nc_x32(
groups, group_channels,
groups * group_channels /* input stride */,
groups * group_channels /* output stride */,
0 /* flags */, &channel_shuffle_op);
if (status != xnn_status_success || channel_shuffle_op == nullptr) {
state.SkipWithError("failed to create X32 Channel Shuffle operator");
return;
}
status = xnn_setup_channel_shuffle_nc_x32(
channel_shuffle_op,
batch_size,
input.data(), output.data(),
nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to setup X32 Channel Shuffle operator");
return;
}
for (auto _ : state) {
status = xnn_run_operator(channel_shuffle_op, nullptr /* thread pool */);
if (status != xnn_status_success) {
state.SkipWithError("failed to run X32 Channel Shuffle operator");
return;
}
}
status = xnn_delete_operator(channel_shuffle_op);
if (status != xnn_status_success) {
state.SkipWithError("failed to delete X32 Channel Shuffle operator");
return;
}
state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
const size_t elements_per_iteration = batch_size * groups * group_channels;
state.counters["elements"] =
benchmark::Counter(uint64_t(state.iterations()) * elements_per_iteration, benchmark::Counter::kIsRate);
const size_t bytes_per_iteration = 2 * elements_per_iteration * sizeof(float);
state.counters["bytes"] =
benchmark::Counter(uint64_t(state.iterations()) * bytes_per_iteration, benchmark::Counter::kIsRate);
}
static void ShuffleNetV1G2Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({56 * 56, 2, 25});
b->Args({28 * 28, 2, 25});
/******** Stage 3 ********/
/* H W G CG */
b->Args({28 * 28, 2, 50});
b->Args({14 * 14, 2, 50});
/******** Stage 4 ********/
/* H W G CG */
b->Args({14 * 14, 2, 100});
b->Args({ 7 * 7, 2, 100});
}
static void ShuffleNetV1G3Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({56 * 56, 3, 20});
b->Args({28 * 28, 3, 20});
/******** Stage 3 *******/
/* H W G CG */
b->Args({28 * 28, 3, 40});
b->Args({14 * 14, 3, 40});
/******** Stage 4 *******/
/* H W G CG */
b->Args({14 * 14, 3, 80});
b->Args({ 7 * 7, 3, 80});
}
static void ShuffleNetV1G4Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({56 * 56, 4, 17});
b->Args({28 * 28, 4, 17});
/******** Stage 3 *******/
/* H W G CG */
b->Args({28 * 28, 4, 34});
b->Args({14 * 14, 4, 34});
/******** Stage 4 *******/
/* H W G CG */
b->Args({14 * 14, 4, 68});
b->Args({ 7 * 7, 4, 68});
}
static void ShuffleNetV1G8Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({56 * 56, 8, 12});
b->Args({28 * 28, 8, 12});
/******** Stage 3 *******/
/* H W G CG */
b->Args({28 * 28, 8, 24});
b->Args({14 * 14, 8, 24});
/******** Stage 4 *******/
/* H W G CG */
b->Args({14 * 14, 8, 48});
b->Args({ 7 * 7, 8, 48});
}
static void ShuffleNetV2x0_5Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 *******/
/* H W G CG */
b->Args({28 * 28, 2, 24});
/******** Stage 3 *******/
/* H W G CG */
b->Args({14 * 14, 2, 48});
/******** Stage 4 *******/
/* H W G CG */
b->Args({ 7 * 7, 2, 96});
}
static void ShuffleNetV2x1_0Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({28 * 28, 2, 58});
/******** Stage 3 ********/
/* H W G CG */
b->Args({14 * 14, 2, 116});
/******** Stage 4 ********/
/* H W G CG */
b->Args({ 7 * 7, 2, 232});
}
static void ShuffleNetV2x1_5Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({28 * 28, 2, 88});
/******** Stage 3 ********/
/* H W G CG */
b->Args({14 * 14, 2, 176});
/******** Stage 4 ********/
/* H W G CG */
b->Args({ 7 * 7, 2, 352});
}
static void ShuffleNetV2x2_0Arguments(benchmark::internal::Benchmark* b)
{
b->ArgNames({"N", "G", "GC"});
/******** Stage 2 ********/
/* H W G CG */
b->Args({28 * 28, 2, 122});
/******** Stage 3 ********/
/* H W G CG */
b->Args({14 * 14, 2, 244});
/******** Stage 4 ********/
/* H W G CG */
b->Args({ 7 * 7, 2, 488});
}
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x05, "ShuffleNet v2 x0.5")->Apply(ShuffleNetV2x0_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x10, "ShuffleNet v2 x1.0")->Apply(ShuffleNetV2x1_0Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x15, "ShuffleNet v2 x1.5")->Apply(ShuffleNetV2x1_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x8, shufflenet_v2_x20, "ShuffleNet v2 x2.0")->Apply(ShuffleNetV2x2_0Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x05, "ShuffleNet v2 x0.5")->Apply(ShuffleNetV2x0_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x10, "ShuffleNet v2 x1.0")->Apply(ShuffleNetV2x1_0Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x15, "ShuffleNet v2 x1.5")->Apply(ShuffleNetV2x1_5Arguments)->UseRealTime();
BENCHMARK_CAPTURE(channel_shuffle_x32, shufflenet_v2_x20, "ShuffleNet v2 x2.0")->Apply(ShuffleNetV2x2_0Arguments)->UseRealTime();
#ifndef XNNPACK_BENCHMARK_NO_MAIN
BENCHMARK_MAIN();
#endif