blob: 86441ddb7952f64972c0dee22ee2887be3265717 [file] [log] [blame]
// Auto-generated file. Do not edit!
// Template: src/qs8-gemm/MRxNRc4-neondot.c.in
// Generator: tools/xngen
//
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/gemm.h>
void xnn_qs8_gemm_minmax_ukernel_1x16c4__neondot(
size_t mr,
size_t nc,
size_t kc,
const int8_t* restrict a,
size_t a_stride,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN {
assert(mr != 0);
assert(mr <= 1);
assert(nc != 0);
assert(kc != 0);
const int8_t* a0 = a;
int8_t* c0 = c;
// Loop over groups of 16 columns.
do {
// Initialize accumulators with bias. 16 bias values are loaded from the
// weight matrix, at the start of the group of 16 columns.
int32x4_t vacc0x0123 = vld1q_s32(w); w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
int32x4_t vacc0x4567 = vld1q_s32(w); w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
int32x4_t vacc0x89AB = vld1q_s32(w); w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
int32x4_t vacc0xCDEF = vld1q_s32(w); w = (const void*) ((uintptr_t) w + 4 * sizeof(int32_t));
// Inner accumulation loop along the 16 columns.
size_t k = kc;
// 2x partial unrolled loop to load 8 bytes at a time.
while (k >= 8 * sizeof(int8_t)) {
// Load a 1x8 block of activations.
const int8x8_t va0x01234567 = vld1_s8(a0); a0 += 8;
// Load a 8x16 block of weights.
const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123x89AB = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123xCDEF = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x89AB = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567xCDEF = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
// Multiply-accumulate: 1x8 * 8x16 --> 1x16.
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
vacc0x89AB = vdotq_lane_s32(vacc0x89AB, vb0123x89AB, va0x01234567, 0);
vacc0xCDEF = vdotq_lane_s32(vacc0xCDEF, vb0123xCDEF, va0x01234567, 0);
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb4567x0123, va0x01234567, 1);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb4567x4567, va0x01234567, 1);
vacc0x89AB = vdotq_lane_s32(vacc0x89AB, vb4567x89AB, va0x01234567, 1);
vacc0xCDEF = vdotq_lane_s32(vacc0xCDEF, vb4567xCDEF, va0x01234567, 1);
k -= 8 * sizeof(int8_t);
}
// Handle up to 7 final positions of `k`
if XNN_UNLIKELY(k != 0) {
// Load a 1x4 block of activations.
const int8x8_t va0x01234567 = vld1_s8(a0); a0 += k;
// Load a 4x16 block of weights.
const int8x16_t vb0123x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123x89AB = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb0123xCDEF = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
// Multiply-accumulate: 1x4 * 4x16 --> 1x16.
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb0123x0123, va0x01234567, 0);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb0123x4567, va0x01234567, 0);
vacc0x89AB = vdotq_lane_s32(vacc0x89AB, vb0123x89AB, va0x01234567, 0);
vacc0xCDEF = vdotq_lane_s32(vacc0xCDEF, vb0123xCDEF, va0x01234567, 0);
if (k > 4) {
// Load a 4x16 block of weights.
const int8x16_t vb4567x0123 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x4567 = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567x89AB = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
const int8x16_t vb4567xCDEF = vld1q_s8(w); w = (const void*) ((const int8_t*) w + 16);
// Multiply-accumulate: 1x4 * 4x16 --> 1x16.
vacc0x0123 = vdotq_lane_s32(vacc0x0123, vb4567x0123, va0x01234567, 1);
vacc0x4567 = vdotq_lane_s32(vacc0x4567, vb4567x4567, va0x01234567, 1);
vacc0x89AB = vdotq_lane_s32(vacc0x89AB, vb4567x89AB, va0x01234567, 1);
vacc0xCDEF = vdotq_lane_s32(vacc0xCDEF, vb4567xCDEF, va0x01234567, 1);
}
}
// End of accumulation loop. The variable `kc` contains the amount by which
// we advanced the `va` pointers, so we rewind by this amount now.
a0 = (const int8_t*) ((uintptr_t) a0 - kc);
// Post-accumulation work
const int32x4_t vright_shift = vld1q_dup_s32(&params->neon.right_shift);
const int32x4_t vzero_shift_mask = vreinterpretq_s32_u32(vceqq_s32(vright_shift, vmovq_n_s32(0)));
const int32x4_t vproduct0x0123 = vqrdmulhq_n_s32(vacc0x0123, params->neon.multiplier);
const int32x4_t vproduct0x4567 = vqrdmulhq_n_s32(vacc0x4567, params->neon.multiplier);
const int32x4_t vproduct0x89AB = vqrdmulhq_n_s32(vacc0x89AB, params->neon.multiplier);
const int32x4_t vproduct0xCDEF = vqrdmulhq_n_s32(vacc0xCDEF, params->neon.multiplier);
vacc0x0123 = vsraq_n_s32(vproduct0x0123, vbicq_s32(vacc0x0123, vzero_shift_mask), 31);
vacc0x4567 = vsraq_n_s32(vproduct0x4567, vbicq_s32(vacc0x4567, vzero_shift_mask), 31);
vacc0x89AB = vsraq_n_s32(vproduct0x89AB, vbicq_s32(vacc0x89AB, vzero_shift_mask), 31);
vacc0xCDEF = vsraq_n_s32(vproduct0xCDEF, vbicq_s32(vacc0xCDEF, vzero_shift_mask), 31);
vacc0x0123 = vrshlq_s32(vacc0x0123, vright_shift);
vacc0x4567 = vrshlq_s32(vacc0x4567, vright_shift);
vacc0x89AB = vrshlq_s32(vacc0x89AB, vright_shift);
vacc0xCDEF = vrshlq_s32(vacc0xCDEF, vright_shift);
const int16x8_t voutput_zero_point = vld1q_dup_s16(&params->neon.output_zero_point);
#if XNN_ARCH_ARM64
const int16x8_t vacc0x01234567 = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x0123), vacc0x4567), voutput_zero_point);
const int16x8_t vacc0x89ABCDEF = vqaddq_s16(vqmovn_high_s32(vqmovn_s32(vacc0x89AB), vacc0xCDEF), voutput_zero_point);
int8x16_t vout0x0123456789ABCDEF = vqmovn_high_s16(vqmovn_s16(vacc0x01234567), vacc0x89ABCDEF);
#else
const int16x8_t vacc0x01234567 = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x0123), vqmovn_s32(vacc0x4567)), voutput_zero_point);
const int16x8_t vacc0x89ABCDEF = vqaddq_s16(vcombine_s16(vqmovn_s32(vacc0x89AB), vqmovn_s32(vacc0xCDEF)), voutput_zero_point);
int8x16_t vout0x0123456789ABCDEF = vcombine_s8(vqmovn_s16(vacc0x01234567), vqmovn_s16(vacc0x89ABCDEF));
#endif
const int8x16_t voutput_min = vld1q_dup_s8(&params->neon.output_min);
const int8x16_t voutput_max = vld1q_dup_s8(&params->neon.output_max);
vout0x0123456789ABCDEF = vmaxq_s8(vout0x0123456789ABCDEF, voutput_min);
vout0x0123456789ABCDEF = vminq_s8(vout0x0123456789ABCDEF, voutput_max);
if (nc >= 16) {
// Main case where there the 16 columns fit in the destination.
vst1q_s8(c0 + 0, vout0x0123456789ABCDEF);
// Advance to the next 16 columns.
c0 = (int8_t*) ((uintptr_t) c0 + cn_stride);
nc -= 16;
} else {
// Final case where not all of the 16 columns fit in the destination.
int8x8_t vout0x01234567 = vget_low_s8(vout0x0123456789ABCDEF);
if (nc & 8) {
vst1_s8(c0, vout0x01234567); c0 += 8;
vout0x01234567 = vget_high_s8(vout0x0123456789ABCDEF);
}
if (nc & 4) {
vst1_lane_u32(__builtin_assume_aligned(c0, 1), vreinterpret_u32_s8(vout0x01234567), 0); c0 += 4;
vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 4);
}
if (nc & 2) {
vst1_lane_u16(__builtin_assume_aligned(c0, 1), vreinterpret_u16_s8(vout0x01234567), 0); c0 += 2;
vout0x01234567 = vext_s8(vout0x01234567, vout0x01234567, 2);
}
if (nc & 1) {
vst1_lane_s8(c0, vout0x01234567, 0);
}
nc = 0;
}
} while (nc != 0);
}