blob: f30a5e8a90a5bc885a9cfa2ead680d1c33f092a9 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert MR <= 4
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/igemm.h>
#include <xnnpack/intrinsics-polyfill.h>
void xnn_qs8_igemm_minmax_ukernel_${MR}x8c8__avx2(
size_t mr,
size_t nc,
size_t kc,
size_t ks,
const int8_t** restrict a,
const void* restrict w,
int8_t* restrict c,
size_t cm_stride,
size_t cn_stride,
size_t a_offset,
const int8_t* zero,
const union xnn_qs8_gemm_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
{
assert(mr != 0);
assert(mr <= ${MR});
assert(nc != 0);
assert(kc != 0);
assert(ks != 0);
assert(ks % (${MR} * sizeof(void*)) == 0);
assert(a_offset % sizeof(int8_t) == 0);
assert(a != NULL);
assert(w != NULL);
assert(c != NULL);
int8_t* c0 = c;
$for M in range(1, MR):
int8_t* c${M} = (int8_t*) ((uintptr_t) c${M-1} + cm_stride);
$if M % 2 == 0:
if XNN_UNPREDICTABLE(mr <= ${M}) {
c${M} = c${M-1};
}
$elif M + 1 == MR:
if XNN_UNPREDICTABLE(mr != ${M+1}) {
c${M} = c${M-1};
}
$else:
if XNN_UNPREDICTABLE(mr < ${M+1}) {
c${M} = c${M-1};
}
do {
const __m128i vbias0x0 = _mm_loadu_si32(w);
const __m128i vbias0x1 = _mm_loadu_si32((const void*) ((uintptr_t) w + sizeof(int32_t)));
__m256i vacc0x01 = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x0), vbias0x1, 1);
$for N in range(2, 8, 2):
const __m128i vbias0x${N} = _mm_loadu_si32((const void*) ((uintptr_t) w + ${N} * sizeof(int32_t)));
const __m128i vbias0x${N+1} = _mm_loadu_si32((const void*) ((uintptr_t) w + ${N+1} * sizeof(int32_t)));
__m256i vacc0x${N}${N+1} = _mm256_inserti128_si256(_mm256_castsi128_si256(vbias0x${N}), vbias0x${N+1}, 1);
$for M in range(1, MR):
$for N in range(0, 8, 2):
__m256i vacc${M}x${N}${N+1} = vacc0x${N}${N+1};
w = (const void*) ((uintptr_t) w + 8 * sizeof(int32_t));
size_t p = ks;
do {
$for M in range(MR):
const int8_t* restrict a${M} = a[${M}];
if XNN_UNPREDICTABLE(a${M} != zero) {
a${M} = (const int8_t*) ((uintptr_t) a${M} + a_offset);
}
a += ${MR};
size_t k = 0;
while (k < kc) {
$for M in range(MR):
const __m128i va${M} = _mm_broadcastq_epi64(_mm_loadl_epi64((const __m128i*) a${M}));
const __m256i vxa${M} = _mm256_cvtepi8_epi16(va${M});
a${M} += 8;
$for N in range(0, 8, 2):
$if N == 0:
const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) w);
$else:
const __m128i vb${N}${N+1} = _mm_load_si128((const __m128i*) ((uintptr_t) w + ${N * 8} * sizeof(int8_t)));
const __m256i vxb${N}${N+1} = _mm256_cvtepi8_epi16(vb${N}${N+1});
$for M in range(MR):
vacc${M}x${N}${N+1} = _mm256_add_epi32(vacc${M}x${N}${N+1}, _mm256_madd_epi16(vxa${M}, vxb${N}${N+1}));
w = (const void*) ((uintptr_t) w + 64 * sizeof(int8_t));
k += 8 * sizeof(int8_t);
}
p -= ${MR} * sizeof(void*);
} while (p != 0);
$for M in range(MR):
const __m256i vacc${M}x0213 = _mm256_hadd_epi32(vacc${M}x01, vacc${M}x23);
const __m256i vacc${M}x4657 = _mm256_hadd_epi32(vacc${M}x45, vacc${M}x67);
$for M in range(MR):
const __m256i vacc${M}x02461357 = _mm256_hadd_epi32(vacc${M}x0213, vacc${M}x4657);
const __m256i vpermute_mask = _mm256_set_epi32(7, 3, 6, 2, 5, 1, 4, 0);
$for M in range(MR):
__m256i vacc${M}x01234567 = _mm256_permutevar8x32_epi32(vacc${M}x02461357, vpermute_mask);
const __m256i vmultiplier = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.multiplier));
const __m256i vrounding = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.rounding));
$for M in range(MR):
const __m256i vacc${M}x11335577 = _mm256_shuffle_epi32(vacc${M}x01234567, _MM_SHUFFLE(3, 3, 1, 1));
$for M in range(MR):
const __m256i vprod${M}x0246 = _mm256_add_epi64(_mm256_mul_epi32(vacc${M}x01234567, vmultiplier), vrounding);
$for M in range(MR):
const __m256i vprod${M}x1357 = _mm256_add_epi64(_mm256_mul_epi32(vacc${M}x11335577, vmultiplier), vrounding);
$for M in range(MR):
const __m256i vq31prod${M}x0246 = _mm256_srli_epi64(vprod${M}x0246, 31);
const __m256i vq31prod${M}x1357 = _mm256_add_epi64(vprod${M}x1357, vprod${M}x1357);
$for M in range(MR):
const __m256i vq31prod${M}x01234567 = _mm256_blend_epi16(vq31prod${M}x0246, vq31prod${M}x1357, 0xCC);
const __m256i vremainder_mask = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_mask));
$for M in range(MR):
const __m256i vrem${M}x01234567 =
_mm256_add_epi32(_mm256_and_si256(vq31prod${M}x01234567, vremainder_mask), _mm256_cmpgt_epi32(_mm256_setzero_si256(), vq31prod${M}x01234567));
const __m256i vremainder_threshold = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.remainder_threshold));
const __m128i vshift = _mm_load_si128((const __m128i*) params->sse2.shift);
$for M in range(MR):
vacc${M}x01234567 =
_mm256_sub_epi32(_mm256_sra_epi32(vq31prod${M}x01234567, vshift), _mm256_cmpgt_epi32(vrem${M}x01234567, vremainder_threshold));
const __m256i voutput_zero_point = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_zero_point));
$for M in range(0, MR, 2):
__m256i vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_adds_epi16(_mm256_packs_epi32(vacc${M}x01234567, vacc${min(M+1, MR-1)}x01234567), voutput_zero_point);
$for M in range(0, MR, 2):
vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_permute4x64_epi64(vacc${M}${min(M+1, MR-1)}x01234567, _MM_SHUFFLE(3, 1, 2, 0));
const __m256i voutput_min = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_min));
const __m256i voutput_max = _mm256_broadcastsi128_si256(_mm_load_si128((const __m128i*) params->sse2.output_max));
$for M in range(0, MR, 2):
vacc${M}${min(M+1, MR-1)}x01234567 = _mm256_min_epi16(_mm256_max_epi16(vacc${M}${min(M+1, MR-1)}x01234567, voutput_min), voutput_max);
$if MR > 2:
__m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc${min(2, MR-1)}${min(3, MR-1)}x01234567);
$else:
__m256i vout = _mm256_packs_epi16(vacc0${min(1, MR-1)}x01234567, vacc0${min(1, MR-1)}x01234567);
__m128i vout_lo = _mm256_castsi256_si128(vout);
__m128i vout_hi = _mm256_extracti128_si256(vout, 1);
if (nc >= 8) {
$if MR > 3:
_mm_storeh_pi((__m64*) c3, _mm_castsi128_ps(vout_hi));
$if MR > 2:
_mm_storeh_pi((__m64*) c2, _mm_castsi128_ps(vout_lo));
$if MR > 1:
_mm_storel_epi64((__m128i*) c1, vout_hi);
_mm_storel_epi64((__m128i*) c0, vout_lo);
$for M in reversed(range(MR)):
c${M} = (int8_t*) ((uintptr_t) c${M} + cn_stride);
a = (const int8_t**restrict) ((uintptr_t) a - ks);
nc -= 8;
} else {
if (nc & 4) {
$if MR > 3:
*((uint32_t*) c3) = (uint32_t) _mm_extract_epi32(vout_hi, 2);
$if MR > 2:
*((uint32_t*) c2) = (uint32_t) _mm_extract_epi32(vout_lo, 2);
$if MR > 1:
_mm_storeu_si32(c1, vout_hi);
_mm_storeu_si32(c0, vout_lo);
$for M in reversed(range(MR)):
c${M} += 4;
vout_lo = _mm_srli_epi64(vout_lo, 32);
vout_hi = _mm_srli_epi64(vout_hi, 32);
}
if (nc & 2) {
$if MR > 3:
*((uint16_t*) c3) = (uint16_t) _mm_extract_epi16(vout_hi, 4);
$if MR > 2:
*((uint16_t*) c2) = (uint16_t) _mm_extract_epi16(vout_lo, 4);
$if MR > 1:
*((uint16_t*) c1) = (uint16_t) _mm_extract_epi16(vout_hi, 0);
*((uint16_t*) c0) = (uint16_t) _mm_extract_epi16(vout_lo, 0);
$for M in reversed(range(MR)):
c${M} += 2;
vout_lo = _mm_srli_epi32(vout_lo, 16);
vout_hi = _mm_srli_epi32(vout_hi, 16);
}
if (nc & 1) {
$if MR > 3:
*c3 = (uint8_t) _mm_extract_epi8(vout_hi, 8);
$if MR > 2:
*c2 = (uint8_t) _mm_extract_epi8(vout_lo, 8);
$if MR > 1:
*c1 = (uint8_t) _mm_extract_epi8(vout_hi, 0);
*c0 = (int8_t) _mm_extract_epi8(vout_lo, 0);
}
nc = 0;
}
} while (nc != 0);
}