blob: 9d637d21f9ad34a2bd5b72fc3d8de8dabcf30ce1 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$SSE_HEADER = {2: "emmintrin.h", 3: "tmmintrin.h", 4: "smmintrin.h"}[SSE]
$assert CHANNEL_TILE % 8 == 0
$assert CHANNEL_TILE >= 8
$assert ROW_TILE >= 2
$assert ROW_SUBTILE >= 2
$assert ROW_SUBTILE <= ROW_TILE
$assert ACCUMULATORS >= 1
$assert ROW_TILE >= ACCUMULATORS * 2
$assert ROW_SUBTILE >= ACCUMULATORS * 2
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <${SSE_HEADER}>
#include <xnnpack/gavgpool.h>
#include <xnnpack/math.h>
$ISA = {2: "sse2", 3: "ssse3", 4: "sse41"}[SSE]
void xnn_qs8_gavgpool_minmax_ukernel_${ROW_TILE}p${ROW_SUBTILE}x__${ISA}_c${CHANNEL_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t rows,
size_t channels,
const int8_t* input,
size_t input_stride,
const int8_t* zero,
int32_t* buffer,
int8_t* output,
const union xnn_qs8_avgpool_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
{
assert(rows > ${ROW_TILE});
assert(channels != 0);
const int8_t* i0 = input;
$for M in range(1, ROW_TILE):
const int8_t* i${M} = (const int8_t*) ((uintptr_t) i${M-1} + input_stride);
$if CHANNEL_TILE <= 16:
const size_t input_increment = ${ROW_TILE} * input_stride - round_up_po2(channels, ${CHANNEL_TILE});
$else:
const size_t input_increment = ${ROW_TILE} * input_stride - round_up_po2(channels, 8);
const __m128i vbias = _mm_load_si128((const __m128i*) params->sse2.bias);
int32_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 16 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 16 else "c = doz(c, %d)") % CHANNEL_TILE}) {
$for M in range(ROW_TILE):
$if SSE >= 4:
const __m128i vxi${M}x${ABC[0:8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) (i${M} + ${C})));
$else:
const __m128i vi${M}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${M});
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vi${M}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${M} + ${C}));
i${M} += ${CHANNEL_TILE};
$if SSE < 4:
$for M in range(ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${M}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${M}x${ABC[C:C+8]}));
$for A in range(ACCUMULATORS):
$for C in range(0, CHANNEL_TILE, 8):
__m128i vacc${A}x${ABC[C:C+8]} = _mm_add_epi16(vxi${A*2}x${ABC[C:C+8]}, vxi${A*2+1}x${ABC[C:C+8]});
$for M in range(ACCUMULATORS * 2, ROW_TILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M % ACCUMULATORS}x${ABC[C:C+8]} = _mm_add_epi16(vacc${M % ACCUMULATORS}x${ABC[C:C+8]}, vxi${M}x${ABC[C:C+8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0x${ABC[0:CHANNEL_TILE]}
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${A}x${ABC[C:C+8]} = _mm_add_epi16(vacc${A}x${ABC[C:C+8]}, vacc${A + ACC_SLICE}x${ABC[C:C+8]});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if SSE >= 4:
const __m128i vacc${ABC[C:C+4]} = _mm_add_epi32(vbias, _mm_cvtepi16_epi32(vacc0x${ABC[C:C+8]}));
const __m128i vacc${ABC[C+4:C+8]} = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vacc0x${ABC[C:C+8]}, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[C:C+8]})));
$else:
const __m128i vsgnacc0x${ABC[C:C+8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[C:C+8]});
const __m128i vacc${ABC[C:C+4]} = _mm_add_epi32(vbias, _mm_unpacklo_epi16(vacc0x${ABC[C:C+8]}, vsgnacc0x${ABC[C:C+8]}));
const __m128i vacc${ABC[C+4:C+8]} = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vacc0x${ABC[C:C+8]}, vsgnacc0x${ABC[C:C+8]}));
_mm_store_si128((__m128i*) b, vacc${ABC[0:4]});
$for C in range(4, CHANNEL_TILE, 4):
_mm_store_si128((__m128i*) (b + ${C}), vacc${ABC[C:C+4]});
b += ${CHANNEL_TILE};
}
$if CHANNEL_TILE > 16:
if XNN_UNLIKELY(c != 0) {
do {
$for M in range(ROW_TILE):
$if SSE >= 4:
const __m128i vxi${M}x${ABC[0:8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i${M}));
$else:
const __m128i vi${M}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${M});
i${M} += 8;
$if SSE < 4:
$for M in range(ROW_TILE):
const __m128i vxi${M}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${M}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${M}x${ABC[0:8]}));
$for A in range(ACCUMULATORS):
__m128i vacc${A}x${ABC[0:8]} = _mm_add_epi16(vxi${A*2}x${ABC[0:8]}, vxi${A*2+1}x${ABC[0:8]});
$for M in range(ACCUMULATORS * 2, ROW_TILE):
vacc${M % ACCUMULATORS}x${ABC[0:8]} = _mm_add_epi16(vacc${M % ACCUMULATORS}x${ABC[0:8]}, vxi${M}x${ABC[0:8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0x${ABC[0:8]}
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A}x${ABC[0:8]} = _mm_add_epi16(vacc${A}x${ABC[0:8]}, vacc${A + ACC_SLICE}x${ABC[0:8]});
$ACC_SLICE *= 2
$if SSE >= 4:
const __m128i vacc${ABC[0:4]} = _mm_add_epi32(vbias, _mm_cvtepi16_epi32(vacc0x${ABC[0:8]}));
const __m128i vacc${ABC[4:8]} = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vacc0x${ABC[0:8]}, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[0:8]})));
$else:
const __m128i vsgnacc0x${ABC[0:8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[0:8]});
const __m128i vacc${ABC[0:4]} = _mm_add_epi32(vbias, _mm_unpacklo_epi16(vacc0x${ABC[0:8]}, vsgnacc0x${ABC[0:8]}));
const __m128i vacc${ABC[4:8]} = _mm_add_epi32(vbias, _mm_unpackhi_epi16(vacc0x${ABC[0:8]}, vsgnacc0x${ABC[0:8]}));
_mm_store_si128((__m128i*) b, vacc${ABC[0:4]});
_mm_store_si128((__m128i*) (b + 4), vacc${ABC[4:8]});
b += 8;
c = doz(c, 8);
} while (c != 0);
}
for (rows -= ${ROW_TILE}; rows > ${ROW_SUBTILE}; rows -= ${ROW_SUBTILE}) {
$for M in range(ROW_SUBTILE):
i${M} = (const int8_t*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
int32_t* b = buffer;
size_t c = channels;
for (; ${"c >= %d" % CHANNEL_TILE if CHANNEL_TILE > 16 else "c != 0"}; ${("c -= %d" if CHANNEL_TILE > 16 else "c = doz(c, %d)") % CHANNEL_TILE}) {
$for M in range(ROW_SUBTILE):
$if SSE >= 4:
const __m128i vxi${M}x${ABC[0:8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) (i${M} + ${C})));
$else:
const __m128i vi${M}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${M});
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vi${M}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${M} + ${C}));
i${M} += ${CHANNEL_TILE};
$if SSE < 4:
$for M in range(ROW_SUBTILE):
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${M}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${M}x${ABC[C:C+8]}));
$for A in range(ACCUMULATORS):
$for C in range(0, CHANNEL_TILE, 8):
__m128i vacc${A}x${ABC[C:C+8]} = _mm_add_epi16(vxi${A*2}x${ABC[C:C+8]}, vxi${A*2+1}x${ABC[C:C+8]});
$for M in range(ACCUMULATORS * 2, ROW_SUBTILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M % ACCUMULATORS}x${ABC[C:C+8]} = _mm_add_epi16(vacc${M % ACCUMULATORS}x${ABC[C:C+8]}, vxi${M}x${ABC[C:C+8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0x${ABC[0:CHANNEL_TILE]}
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${A}x${ABC[C:C+8]} = _mm_add_epi16(vacc${A}x${ABC[C:C+8]}, vacc${A + ACC_SLICE}x${ABC[C:C+8]});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if SSE >= 4:
const __m128i vacc${ABC[C:C+4]} = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x${ABC[C:C+8]}), _mm_load_si128((const __m128i*) (b + ${C})));
const __m128i vacc${ABC[C+4:C+8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[C:C+8]}, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[C:C+8]})), _mm_load_si128((const __m128i*) (b + ${C+4})));
$else:
const __m128i vsgnacc0x${ABC[C:C+8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[C:C+8]});
const __m128i vacc${ABC[C:C+4]} = _mm_add_epi32(_mm_unpacklo_epi16(vacc0x${ABC[C:C+8]}, vsgnacc0x${ABC[C:C+8]}), _mm_load_si128((const __m128i*) (b + ${C})));
const __m128i vacc${ABC[C+4:C+8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[C:C+8]}, vsgnacc0x${ABC[C:C+8]}), _mm_load_si128((const __m128i*) (b + ${C+4})));
_mm_store_si128((__m128i*) b, vacc${ABC[0:4]});
$for C in range(4, CHANNEL_TILE, 4):
_mm_store_si128((__m128i*) (b + ${C}), vacc${ABC[C:C+4]});
b += ${CHANNEL_TILE};
}
$if CHANNEL_TILE > 16:
if XNN_UNLIKELY(c != 0) {
do {
$for M in range(ROW_SUBTILE):
$if SSE >= 4:
const __m128i vxi${M}x${ABC[0:8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i${M}));
$else:
const __m128i vi${M}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${M});
i${M} += 8;
$if SSE < 4:
$for M in range(ROW_SUBTILE):
const __m128i vxi${M}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${M}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${M}x${ABC[0:8]}));
$for A in range(ACCUMULATORS):
__m128i vacc${A}x${ABC[0:8]} = _mm_add_epi16(vxi${A*2}x${ABC[0:8]}, vxi${A*2+1}x${ABC[0:8]});
$for M in range(ACCUMULATORS * 2, ROW_SUBTILE):
vacc${M % ACCUMULATORS}x${ABC[0:8]} = _mm_add_epi16(vacc${M % ACCUMULATORS}x${ABC[0:8]}, vxi${M}x${ABC[0:8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0x${ABC[0:8]}
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A}x${ABC[0:8]} = _mm_add_epi16(vacc${A}x${ABC[0:8]}, vacc${A + ACC_SLICE}x${ABC[0:8]});
$ACC_SLICE *= 2
$if SSE >= 4:
const __m128i vacc${ABC[0:4]} = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x${ABC[0:8]}), _mm_load_si128((const __m128i*) b));
const __m128i vacc${ABC[4:8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[0:8]}, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[0:8]})), _mm_load_si128((const __m128i*) (b + 4)));
$else:
const __m128i vsgnacc0x${ABC[0:8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[0:8]});
const __m128i vacc${ABC[0:4]} = _mm_add_epi32(_mm_unpacklo_epi16(vacc0x${ABC[0:8]}, vsgnacc0x${ABC[0:8]}), _mm_load_si128((const __m128i*) b));
const __m128i vacc${ABC[4:8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[0:8]}, vsgnacc0x${ABC[0:8]}), _mm_load_si128((const __m128i*) (b + 4)));
_mm_store_si128((__m128i*) b, vacc${ABC[0:4]});
_mm_store_si128((__m128i*) (b + 4), vacc${ABC[4:8]});
b += 8;
c = doz(c, 8);
} while (c != 0);
}
}
i0 = (const int8_t*) ((uintptr_t) i${ROW_TILE - ROW_SUBTILE} + input_increment);
$for M in range(1, ROW_SUBTILE):
i${M} = (const int8_t*) ((uintptr_t) i${M + ROW_TILE - ROW_SUBTILE} + input_increment);
$if M % 2 == 1:
if XNN_UNPREDICTABLE(rows < ${M+1}) {
i${M} = zero;
}
$else:
if XNN_UNPREDICTABLE(rows <= ${M}) {
i${M} = zero;
}
const __m128i vmultiplier = _mm_load_si128((const __m128i*) params->sse2.multiplier);
const __m128i vrounding = _mm_load_si128((const __m128i*) params->sse2.rounding);
const __m128i vshift = _mm_loadl_epi64((const __m128i*) params->sse2.shift);
while (channels >= ${CHANNEL_TILE}) {
$for M in range(ROW_SUBTILE):
$if SSE >= 4:
const __m128i vxi${M}x${ABC[0:8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i${M}));
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) (i${M} + ${C})));
$else:
const __m128i vi${M}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${M});
$for C in range(8, CHANNEL_TILE, 8):
const __m128i vi${M}x${ABC[C:C+8]} = _mm_loadl_epi64((const __m128i*) (i${M} + ${C}));
i${M} += ${CHANNEL_TILE};
$if SSE < 4:
$for M in range(ROW_SUBTILE):
$for C in range(0, CHANNEL_TILE, 8):
const __m128i vxi${M}x${ABC[C:C+8]} = _mm_unpacklo_epi8(vi${M}x${ABC[C:C+8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${M}x${ABC[C:C+8]}));
$for A in range(ACCUMULATORS):
$for C in range(0, CHANNEL_TILE, 8):
__m128i vacc${A}x${ABC[C:C+8]} = _mm_add_epi16(vxi${A*2}x${ABC[C:C+8]}, vxi${A*2+1}x${ABC[C:C+8]});
$for M in range(ACCUMULATORS * 2, ROW_SUBTILE):
$for C in range(0, CHANNEL_TILE, 8):
vacc${M % ACCUMULATORS}x${ABC[C:C+8]} = _mm_add_epi16(vacc${M % ACCUMULATORS}x${ABC[C:C+8]}, vxi${M}x${ABC[C:C+8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0x${ABC[0:CHANNEL_TILE]}
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${A}x${ABC[C:C+8]} = _mm_add_epi16(vacc${A}x${ABC[C:C+8]}, vacc${A + ACC_SLICE}x${ABC[C:C+8]});
$ACC_SLICE *= 2
$for C in range(0, CHANNEL_TILE, 8):
$if SSE >= 4:
const __m128i vacc${ABC[C:C+4]} = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x${ABC[C:C+8]}), _mm_load_si128((const __m128i*) (buffer + ${C})));
const __m128i vacc${ABC[C+4:C+8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[C:C+8]}, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[C:C+8]})), _mm_load_si128((const __m128i*) (buffer + ${C+4})));
$else:
const __m128i vsgnacc0x${ABC[C:C+8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[C:C+8]});
const __m128i vacc${ABC[C:C+4]} = _mm_add_epi32(_mm_unpacklo_epi16(vacc0x${ABC[C:C+8]}, vsgnacc0x${ABC[C:C+8]}), _mm_load_si128((const __m128i*) (buffer + ${C})));
const __m128i vacc${ABC[C+4:C+8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[C:C+8]}, vsgnacc0x${ABC[C:C+8]}), _mm_load_si128((const __m128i*) (buffer + ${C+4})));
buffer += ${CHANNEL_TILE};
$if SSE >= 3:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsacc${ABC[C:C+4]} = _mm_abs_epi32(vacc${ABC[C:C+4]});
$else:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vsgnacc${ABC[C:C+4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsacc${ABC[C:C+4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[C:C+4]}, vsgnacc${ABC[C:C+4]}), vsgnacc${ABC[C:C+4]});
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsacc${ABC[C+1:C+4:2]} = _mm_shuffle_epi32(vabsacc${ABC[C:C+4]}, _MM_SHUFFLE(3, 3, 1, 1));
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsprod${ABC[C:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C:C+4]}, vmultiplier);
const __m128i vabsprod${ABC[C+1:C+4:2]} = _mm_mul_epu32(vabsacc${ABC[C+1:C+4:2]}, vmultiplier);
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsout${ABC[C:C+4:2]} = _mm_srl_epi64(_mm_add_epi64(vabsprod${ABC[C:C+4:2]}, vrounding), vshift);
const __m128i vabsout${ABC[C+1:C+4:2]} = _mm_srl_epi64(_mm_add_epi64(vabsprod${ABC[C+1:C+4:2]}, vrounding), vshift);
$if SSE >= 4:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsout${ABC[C:C+4]} = _mm_blend_epi16(vabsout${ABC[C:C+4:2]}, _mm_shuffle_epi32(vabsout${ABC[C+1:C+4:2]}, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC);
$else:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsout${ABC[C:C+4:2]}${ABC[C+1:C+4:2]} = _mm_castps_si128(
_mm_shuffle_ps(_mm_castsi128_ps(vabsout${ABC[C:C+4:2]}), _mm_castsi128_ps(vabsout${ABC[C+1:C+4:2]}), _MM_SHUFFLE(2, 0, 2, 0)));
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vabsout${ABC[C:C+4]} = _mm_shuffle_epi32(vabsout${ABC[C:C+4:2]}${ABC[C+1:C+4:2]}, _MM_SHUFFLE(3, 1, 2, 0));
$if SSE >= 3:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vout${ABC[C:C+4]} = _mm_sign_epi32(vabsout${ABC[C:C+4]}, vacc${ABC[C:C+4]});
$else:
$for C in range(0, CHANNEL_TILE, 4):
const __m128i vout${ABC[C:C+4]} = _mm_sub_epi32(_mm_xor_si128(vabsout${ABC[C:C+4]}, vsgnacc${ABC[C:C+4]}), vsgnacc${ABC[C:C+4]});
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
$for C in range(0, CHANNEL_TILE, 8):
__m128i vout${ABC[C:C+8]} = _mm_adds_epi16(_mm_packs_epi32(vout${ABC[C:C+4]}, vout${ABC[C+4:C+8]}), voutput_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
$for C in range(0, CHANNEL_TILE, 8):
vout${ABC[C:C+8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[C:C+8]}, voutput_min), voutput_max);
$for C in range(0, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
__m128i vout${ABC[C:C+16]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C+8:C+16]});
$else:
__m128i vout${ABC[C:C+8]}${ABC[C:C+8]} = _mm_packs_epi16(vout${ABC[C:C+8]}, vout${ABC[C:C+8]});
$if CHANNEL_TILE > 8:
_mm_storeu_si128((__m128i*) output, vout${ABC[0:16]});
$else:
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
$for C in range(16, CHANNEL_TILE, 16):
$if C + 8 < CHANNEL_TILE:
_mm_storeu_si128((__m128i*) (output + ${C}), vout${ABC[C:C+16]});
$else:
_mm_storel_epi64((__m128i*) (output + ${C}), vout${ABC[C:C+8]}${ABC[C:C+8]});
output += ${CHANNEL_TILE};
channels -= ${CHANNEL_TILE};
}
if XNN_UNLIKELY(channels != 0) {
${"do " if CHANNEL_TILE > 8 else ""}{
$for M in range(ROW_SUBTILE):
$if SSE >= 4:
const __m128i vxi${M}x${ABC[0:8]} = _mm_cvtepi8_epi16(_mm_loadl_epi64((const __m128i*) i${M}));
$else:
const __m128i vi${M}x${ABC[0:8]} = _mm_loadl_epi64((const __m128i*) i${M});
i${M} += 8;
$if SSE < 4:
$for M in range(ROW_SUBTILE):
const __m128i vxi${M}x${ABC[0:8]} = _mm_unpacklo_epi8(vi${M}x${ABC[0:8]}, _mm_cmpgt_epi8(_mm_setzero_si128(), vi${M}x${ABC[0:8]}));
$for A in range(ACCUMULATORS):
__m128i vacc${A}x${ABC[0:8]} = _mm_add_epi16(vxi${A*2}x${ABC[0:8]}, vxi${A*2+1}x${ABC[0:8]});
$for M in range(ACCUMULATORS * 2, ROW_SUBTILE):
vacc${M % ACCUMULATORS}x${ABC[0:8]} = _mm_add_epi16(vacc${M % ACCUMULATORS}x${ABC[0:8]}, vxi${M}x${ABC[0:8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc0x${ABC[0:8]}
$ACC_SLICE = 1
$while ACC_SLICE < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
$if A + ACC_SLICE < ACCUMULATORS:
vacc${A}x${ABC[0:8]} = _mm_add_epi16(vacc${A}x${ABC[0:8]}, vacc${A + ACC_SLICE}x${ABC[0:8]});
$ACC_SLICE *= 2
$if SSE >= 4:
const __m128i vacc${ABC[0:4]} = _mm_add_epi32(_mm_cvtepi16_epi32(vacc0x${ABC[0:8]}), _mm_load_si128((const __m128i*) buffer));
const __m128i vacc${ABC[4:8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[0:8]}, _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[0:8]})), _mm_load_si128((const __m128i*) (buffer + 4)));
$else:
const __m128i vsgnacc0x${ABC[0:8]} = _mm_cmpgt_epi16(_mm_setzero_si128(), vacc0x${ABC[0:8]});
const __m128i vacc${ABC[0:4]} = _mm_add_epi32(_mm_unpacklo_epi16(vacc0x${ABC[0:8]}, vsgnacc0x${ABC[0:8]}), _mm_load_si128((const __m128i*) buffer));
const __m128i vacc${ABC[4:8]} = _mm_add_epi32(_mm_unpackhi_epi16(vacc0x${ABC[0:8]}, vsgnacc0x${ABC[0:8]}), _mm_load_si128((const __m128i*) (buffer + 4)));
buffer += 8;
$if SSE >= 3:
const __m128i vabsacc${ABC[0:4]} = _mm_abs_epi32(vacc${ABC[0:4]});
const __m128i vabsacc${ABC[4:8]} = _mm_abs_epi32(vacc${ABC[4:8]});
$else:
const __m128i vsgnacc${ABC[0:4]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[0:4]});
const __m128i vsgnacc${ABC[4:8]} = _mm_cmpgt_epi32(_mm_setzero_si128(), vacc${ABC[4:8]});
const __m128i vabsacc${ABC[0:4]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[0:4]}, vsgnacc${ABC[0:4]}), vsgnacc${ABC[0:4]});
const __m128i vabsacc${ABC[4:8]} = _mm_sub_epi32(_mm_xor_si128(vacc${ABC[4:8]}, vsgnacc${ABC[4:8]}), vsgnacc${ABC[4:8]});
const __m128i vabsacc${ABC[1:4:2]} = _mm_shuffle_epi32(vabsacc${ABC[0:4]}, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vabsacc${ABC[5:8:2]} = _mm_shuffle_epi32(vabsacc${ABC[4:8]}, _MM_SHUFFLE(3, 3, 1, 1));
const __m128i vabsprod${ABC[0:4:2]} = _mm_mul_epu32(vabsacc${ABC[0:4]}, vmultiplier);
const __m128i vabsprod${ABC[1:4:2]} = _mm_mul_epu32(vabsacc${ABC[1:4:2]}, vmultiplier);
const __m128i vabsprod${ABC[4:8:2]} = _mm_mul_epu32(vabsacc${ABC[4:8]}, vmultiplier);
const __m128i vabsprod${ABC[5:8:2]} = _mm_mul_epu32(vabsacc${ABC[5:8:2]}, vmultiplier);
const __m128i vabsout${ABC[0:4:2]} = _mm_srl_epi64(_mm_add_epi64(vabsprod${ABC[0:4:2]}, vrounding), vshift);
const __m128i vabsout${ABC[1:4:2]} = _mm_srl_epi64(_mm_add_epi64(vabsprod${ABC[1:4:2]}, vrounding), vshift);
const __m128i vabsout${ABC[4:8:2]} = _mm_srl_epi64(_mm_add_epi64(vabsprod${ABC[4:8:2]}, vrounding), vshift);
const __m128i vabsout${ABC[5:8:2]} = _mm_srl_epi64(_mm_add_epi64(vabsprod${ABC[5:8:2]}, vrounding), vshift);
$if SSE >= 4:
const __m128i vabsout${ABC[0:4]} = _mm_blend_epi16(vabsout${ABC[0:4:2]}, _mm_shuffle_epi32(vabsout${ABC[1:4:2]}, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC);
const __m128i vabsout${ABC[4:8]} = _mm_blend_epi16(vabsout${ABC[4:8:2]}, _mm_shuffle_epi32(vabsout${ABC[5:8:2]}, _MM_SHUFFLE(2, 2, 0, 0)), 0xCC);
$else:
const __m128i vabsout${ABC[0:4:2]}${ABC[1:4:2]} = _mm_castps_si128(
_mm_shuffle_ps(_mm_castsi128_ps(vabsout${ABC[0:4:2]}), _mm_castsi128_ps(vabsout${ABC[1:4:2]}), _MM_SHUFFLE(2, 0, 2, 0)));
const __m128i vabsout${ABC[4:8:2]}${ABC[5:8:2]} = _mm_castps_si128(
_mm_shuffle_ps(_mm_castsi128_ps(vabsout${ABC[4:8:2]}), _mm_castsi128_ps(vabsout${ABC[5:8:2]}), _MM_SHUFFLE(2, 0, 2, 0)));
const __m128i vabsout${ABC[0:4]} = _mm_shuffle_epi32(vabsout${ABC[0:4:2]}${ABC[1:4:2]}, _MM_SHUFFLE(3, 1, 2, 0));
const __m128i vabsout${ABC[4:8]} = _mm_shuffle_epi32(vabsout${ABC[4:8:2]}${ABC[5:8:2]}, _MM_SHUFFLE(3, 1, 2, 0));
$if SSE >= 3:
const __m128i vout${ABC[0:4]} = _mm_sign_epi32(vabsout${ABC[0:4]}, vacc${ABC[0:4]});
const __m128i vout${ABC[4:8]} = _mm_sign_epi32(vabsout${ABC[4:8]}, vacc${ABC[4:8]});
$else:
const __m128i vout${ABC[0:4]} = _mm_sub_epi32(_mm_xor_si128(vabsout${ABC[0:4]}, vsgnacc${ABC[0:4]}), vsgnacc${ABC[0:4]});
const __m128i vout${ABC[4:8]} = _mm_sub_epi32(_mm_xor_si128(vabsout${ABC[4:8]}, vsgnacc${ABC[4:8]}), vsgnacc${ABC[4:8]});
const __m128i voutput_zero_point = _mm_load_si128((const __m128i*) params->sse2.output_zero_point);
__m128i vout${ABC[0:8]} = _mm_adds_epi16(_mm_packs_epi32(vout${ABC[0:4]}, vout${ABC[4:8]}), voutput_zero_point);
const __m128i voutput_min = _mm_load_si128((const __m128i*) params->sse2.output_min);
const __m128i voutput_max = _mm_load_si128((const __m128i*) params->sse2.output_max);
vout${ABC[0:8]} = _mm_min_epi16(_mm_max_epi16(vout${ABC[0:8]}, voutput_min), voutput_max);
__m128i vout${ABC[0:8]}${ABC[0:8]} = _mm_packs_epi16(vout${ABC[0:8]}, vout${ABC[0:8]});
$if CHANNEL_TILE > 8:
if XNN_LIKELY(channels >= 8) {
_mm_storel_epi64((__m128i*) output, vout${ABC[0:8]}${ABC[0:8]});
output += 8;
channels -= 8;
} else {
if (channels & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (channels & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (channels & 1) {
$if SSE >= 4:
*output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
output += 1;
}
channels = 0;
}
$else:
if (channels & 4) {
*((uint32_t*) output) = (uint32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi64(vout${ABC[0:8]}${ABC[0:8]}, 32);
output += 4;
}
if (channels & 2) {
*((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vout${ABC[0:8]}${ABC[0:8]}, 0);
vout${ABC[0:8]}${ABC[0:8]} = _mm_srli_epi32(vout${ABC[0:8]}${ABC[0:8]}, 16);
output += 2;
}
if (channels & 1) {
$if SSE >= 4:
*output = (int8_t) _mm_extract_epi8(vout${ABC[0:8]}${ABC[0:8]}, 0);
$else:
*output = (int32_t) _mm_cvtsi128_si32(vout${ABC[0:8]}${ABC[0:8]});
}
}${" while (channels != 0);" if CHANNEL_TILE > 8 else ""}
}
}