blob: 3a6fb29fd6089f81df70a50650e6baa803f0291c [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 8 == 0
$assert BATCH_TILE >= 8
$SIMD_TILE = BATCH_TILE // 8
#include <assert.h>
#include <immintrin.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
void xnn_f32_velu_ukernel__avx2_rr1_p6_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const union xnn_f32_elu_params params[restrict XNN_MIN_ELEMENTS(1)])
{
assert(n % sizeof(float) == 0);
const __m256 vprescale = _mm256_broadcast_ps((const __m128*) params->sse.prescale);
const __m256 valpha = _mm256_broadcast_ps((const __m128*) params->sse.alpha);
const __m256 vbeta = _mm256_broadcast_ps((const __m128*) params->sse.beta);
const __m256 vsat_cutoff = _mm256_set1_ps(-0x1.154246p+4f);
const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
const __m256 vc6 = _mm256_set1_ps(0x1.6b7338p-10f);
const __m256 vc5 = _mm256_set1_ps(0x1.12278Ep-7f);
const __m256 vc4 = _mm256_set1_ps(0x1.555716p-5f);
const __m256 vc3 = _mm256_set1_ps(0x1.5554B0p-3f);
const __m256 vc2 = _mm256_set1_ps(0x1.FFFFFEp-2f);
$if BATCH_TILE > 8:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
__m256 vx0 = _mm256_loadu_ps(x);
$for N in range(1, SIMD_TILE):
__m256 vx${N} = _mm256_loadu_ps(x + ${N * 8});
x += ${BATCH_TILE};
$for N in range(SIMD_TILE):
const __m256 vz${N} = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx${N}, vprescale));
$for N in range(SIMD_TILE):
__m256 vn${N} = _mm256_fmadd_ps(vz${N}, vlog2e, vmagic_bias);
$for N in range(SIMD_TILE):
__m256 vs${N} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${N}), 23));
vn${N} = _mm256_sub_ps(vn${N}, vmagic_bias);
$for N in range(SIMD_TILE):
__m256 vt${N} = _mm256_fmadd_ps(vn${N}, vminus_ln2, vz${N});
$for N in range(SIMD_TILE):
__m256 vp${N} = _mm256_fmadd_ps(vc6, vt${N}, vc5);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc4);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc3);
$for N in range(SIMD_TILE):
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vc2);
$for N in range(SIMD_TILE):
vp${N} = _mm256_mul_ps(vp${N}, vt${N});
vt${N} = _mm256_mul_ps(vt${N}, vs${N});
$for N in range(SIMD_TILE):
vs${N} = _mm256_fmsub_ps(vs${N}, valpha, valpha);
vp${N} = _mm256_fmadd_ps(vp${N}, vt${N}, vt${N});
$for N in range(SIMD_TILE):
const __m256 ve${N} = _mm256_fmadd_ps(vp${N}, valpha, vs${N});
vx${N} = _mm256_mul_ps(vx${N}, vbeta);
$for N in range(SIMD_TILE):
const __m256 vy${N} = _mm256_blendv_ps(vx${N}, ve${N}, vx${N});
_mm256_storeu_ps(y, vy0);
$for N in range(1, SIMD_TILE):
_mm256_storeu_ps(y + ${N * 8}, vy${N});
y += ${BATCH_TILE};
}
for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
__m256 vx = _mm256_loadu_ps(x);
x += 8;
const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale));
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
vn = _mm256_sub_ps(vn, vmagic_bias);
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
__m256 vp = _mm256_fmadd_ps(vc6, vt, vc5);
vp = _mm256_fmadd_ps(vp, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_mul_ps(vp, vt);
vt = _mm256_mul_ps(vt, vs);
vs = _mm256_fmsub_ps(vs, valpha, valpha);
vp = _mm256_fmadd_ps(vp, vt, vt);
const __m256 ve = _mm256_fmadd_ps(vp, valpha, vs);
vx = _mm256_mul_ps(vx, vbeta);
const __m256 vy = _mm256_blendv_ps(vx, ve, vx);
_mm256_storeu_ps(y, vy);
y += 8;
}
if XNN_UNLIKELY(n != 0) {
assert(n >= 1 * sizeof(float));
assert(n <= 7 * sizeof(float));
__m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
__m256 vx = _mm256_maskload_ps(x, vmask);
const __m256 vz = _mm256_max_ps(vsat_cutoff, _mm256_mul_ps(vx, vprescale));
__m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
__m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
vn = _mm256_sub_ps(vn, vmagic_bias);
__m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
__m256 vp = _mm256_fmadd_ps(vc6, vt, vc5);
vp = _mm256_fmadd_ps(vp, vt, vc4);
vp = _mm256_fmadd_ps(vp, vt, vc3);
vp = _mm256_fmadd_ps(vp, vt, vc2);
vp = _mm256_mul_ps(vp, vt);
vt = _mm256_mul_ps(vt, vs);
vs = _mm256_fmsub_ps(vs, valpha, valpha);
vp = _mm256_fmadd_ps(vp, vt, vt);
const __m256 ve = _mm256_fmadd_ps(vp, valpha, vs);
vx = _mm256_mul_ps(vx, vbeta);
const __m256 vy = _mm256_blendv_ps(vx, ve, vx);
// _mm256_maskstore_ps(y, vmask, vf) could be used here, but triggers msan failures (probably an msan bug).
__m128 vy_lo = _mm256_castps256_ps128(vy);
if (n & (4 * sizeof(float))) {
_mm_storeu_ps(y, vy_lo);
vy_lo = _mm256_extractf128_ps(vy, 1);
y += 4;
}
if (n & (2 * sizeof(float))) {
_mm_storel_pi((__m64*) y, vy_lo);
vy_lo = _mm_movehl_ps(vy_lo, vy_lo);
y += 2;
}
if (n & (1 * sizeof(float))) {
_mm_store_ss(y, vy_lo);
}
}
}