blob: 14f14ef21ffc7f6f2d5641e1f9f28db334c47ea5 [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert BATCH_TILE % 4 == 0
$assert BATCH_TILE >= 4
$assert RR_STEPS in [1, 2]
$assert DIV_ALGO in ["div", "nr2fma", "nr2recps", "nr1recps1fma"]
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/common.h>
#include <xnnpack/vunary.h>
extern XNN_INTERNAL const float xnn_table_exp2minus_k_over_2048[2048];
void xnn_f32_sigmoid_ukernel__${"neonfma" if FMA else "neon"}_rr${RR_STEPS}_lut2048_p1_${DIV_ALGO}_x${BATCH_TILE}(
size_t n,
const float* x,
float* y,
const void* params) XNN_DISABLE_TSAN
{
assert(n % sizeof(float) == 0);
const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p12f);
const float32x4_t vminus_log2e = vmovq_n_f32(-0x1.715476p0f);
const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x7FF));
$if RR_STEPS == 1:
const float32x4_t vln2 = vmovq_n_f32(0x1.62E43p-1f);
$else:
$if FMA:
const float32x4_t vln2_hi = vmovq_n_f32(0x1.62E43p-1f);
const float32x4_t vln2_lo = vmovq_n_f32(-0x1.05C61p-29f);
$else:
const float32x4_t vln2_hi = vmovq_n_f32(0x1.600000p-1f);
const float32x4_t vln2_lo = vmovq_n_f32(0x1.7217F8p-8f);
const float32x4_t vc1 = vmovq_n_f32(-0x1.FFFFFEp-1f);
const float32x4_t vone = vmovq_n_f32(1.0f);
const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep+6f);
$if BATCH_TILE > 4:
for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vx${ABC[N:N+4]} = vld1q_f32(x); x += 4;
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vz${ABC[N:N+4]} = vabsq_f32(vx${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vz${ABC[N:N+4]}, vminus_log2e);
$for N in range(0, BATCH_TILE, 4):
const int32x4_t ve${ABC[N:N+4]} = vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 12);
$for N in range(0, BATCH_TILE, 4):
const uint64x2_t vidx${ABC[N:N+4]} = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), vindex_mask));
$for N in range(0, BATCH_TILE, 4):
const uint64_t vidx${ABC[N:N+2]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 0);
const uint64_t vidx${ABC[N+2:N+4]} = vgetq_lane_u64(vidx${ABC[N:N+4]}, 1);
float32x2_t vl${ABC[N:N+2]} = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx${ABC[N:N+2]}]);
float32x2_t vl${ABC[N+2:N+4]} = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx${ABC[N+2:N+4]}]);
$for N in range(0, BATCH_TILE, 4):
vl${ABC[N:N+2]} = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx${ABC[N:N+2]} >> 32)], vl${ABC[N:N+2]}, 1);
vl${ABC[N+2:N+4]} = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx${ABC[N+2:N+4]} >> 32)], vl${ABC[N+2:N+4]}, 1);
const float32x4_t vl${ABC[N:N+4]} = vcombine_f32(vl${ABC[N:N+2]}, vl${ABC[N+2:N+4]});
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl${ABC[N:N+4]}), ve${ABC[N:N+4]}));
$for N in range(0, BATCH_TILE, 4):
vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
$if RR_STEPS == 1:
$for N in range(0, BATCH_TILE, 4):
float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2);
$else:
$for N in range(0, BATCH_TILE, 4):
float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vz${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_hi);
$for N in range(0, BATCH_TILE, 4):
vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vln2_lo);
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vp${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vc1);
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vy${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vs${ABC[N:N+4]}, vp${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
const float32x4_t vd${ABC[N:N+4]} = vaddq_f32(vy${ABC[N:N+4]}, vone);
$if DIV_ALGO == "div":
$for N in range(0, BATCH_TILE, 4):
float32x4_t vf${ABC[N:N+4]} = vdivq_f32(vy${ABC[N:N+4]}, vd${ABC[N:N+4]});
$else:
$for N in range(0, BATCH_TILE, 4):
float32x4_t vr${ABC[N:N+4]} = vrecpeq_f32(vd${ABC[N:N+4]});
$if DIV_ALGO == "nr2fma":
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$else:
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$if DIV_ALGO == "nr2recps":
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vmulq_f32(vr${ABC[N:N+4]}, vrecpsq_f32(vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$else:
$for N in range(0, BATCH_TILE, 4):
vr${ABC[N:N+4]} = vfmaq_f32(vr${ABC[N:N+4]}, vr${ABC[N:N+4]}, vfmsq_f32(vone, vr${ABC[N:N+4]}, vd${ABC[N:N+4]}));
$for N in range(0, BATCH_TILE, 4):
float32x4_t vf${ABC[N:N+4]} = vmulq_f32(vy${ABC[N:N+4]}, vr${ABC[N:N+4]});
$for N in range(0, BATCH_TILE, 4):
vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcagtq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
$for N in range(0, BATCH_TILE, 4):
const uint32x4_t vm${ABC[N:N+4]} = vcltq_f32(vx${ABC[N:N+4]}, vmovq_n_f32(0.0f));
$for N in range(0, BATCH_TILE, 4):
vf${ABC[N:N+4]} = vbslq_f32(vm${ABC[N:N+4]}, vf${ABC[N:N+4]}, vsubq_f32(vone, vf${ABC[N:N+4]}));
$for N in range(0, BATCH_TILE, 4):
vst1q_f32(y, vf${ABC[N:N+4]}); y += 4;
}
for (; n >= 4 * sizeof(float); n -= 4 * sizeof(float)) {
const float32x4_t vx = vld1q_f32(x); x += 4;
const float32x4_t vz = vabsq_f32(vx);
float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e);
const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12);
const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]);
float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]);
vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
vn = vsubq_f32(vn, vmagic_bias);
$if RR_STEPS == 1:
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2);
$else:
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi);
vt = ${VMULADDQ_F32}(vt, vn, vln2_lo);
const float32x4_t vp = vmulq_f32(vt, vc1);
const float32x4_t vy = ${VMULADDQ_F32}(vs, vs, vp);
const float32x4_t vd = vaddq_f32(vy, vone);
$if DIV_ALGO == "div":
float32x4_t vf = vdivq_f32(vy, vd);
$else:
float32x4_t vr = vrecpeq_f32(vd);
$if DIV_ALGO == "nr2fma":
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
$else:
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$if DIV_ALGO == "nr2recps":
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$else:
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
float32x4_t vf = vmulq_f32(vy, vr);
vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
vst1q_f32(y, vf); y += 4;
}
if XNN_UNLIKELY(n != 0) {
const float32x4_t vx = vld1q_f32(x);
const float32x4_t vz = vabsq_f32(vx);
float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vz, vminus_log2e);
const int32x4_t ve = vshlq_n_s32(vreinterpretq_s32_f32(vn), 12);
const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_lo]);
float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) vidx_hi]);
vl_lo = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
vl_hi = vld1_lane_f32(&xnn_table_exp2minus_k_over_2048[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
vn = vsubq_f32(vn, vmagic_bias);
$if RR_STEPS == 1:
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2);
$else:
float32x4_t vt = ${VMULADDQ_F32}(vz, vn, vln2_hi);
vt = ${VMULADDQ_F32}(vt, vn, vln2_lo);
const float32x4_t vp = vmulq_f32(vt, vc1);
const float32x4_t vy = ${VMULADDQ_F32}(vs, vs, vp);
const float32x4_t vd = vaddq_f32(vy, vone);
$if DIV_ALGO == "div":
float32x4_t vf = vdivq_f32(vy, vd);
$else:
float32x4_t vr = vrecpeq_f32(vd);
$if DIV_ALGO == "nr2fma":
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
$else:
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$if DIV_ALGO == "nr2recps":
vr = vmulq_f32(vr, vrecpsq_f32(vr, vd));
$else:
vr = vfmaq_f32(vr, vr, vfmsq_f32(vone, vr, vd));
float32x4_t vf = vmulq_f32(vy, vr);
vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcagtq_f32(vx, vdenorm_cutoff)));
const uint32x4_t vm = vcltq_f32(vx, vmovq_n_f32(0.0f));
vf = vbslq_f32(vm, vf, vsubq_f32(vone, vf));
float32x2_t vf_lo = vget_low_f32(vf);
if (n & (2 * sizeof(float))) {
vst1_f32(y, vf_lo); y += 2;
vf_lo = vget_high_f32(vf);
}
if (n & (1 * sizeof(float))) {
vst1_lane_f32(y, vf_lo, 0);
}
}
}