blob: d3d613ec558abbf5aaeca2f6169442f5154e96a3 [file] [log] [blame]
// Copyright 2020 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
$assert CHANNEL_TILE % 8 == 0
$assert KERNEL_TILE >= 2
$assert ACCUMULATORS >= 1
$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
#include <assert.h>
#include <arm_neon.h>
#include <xnnpack/dwconv.h>
void xnn_f16_dwconv_minmax_ukernel_up${CHANNEL_TILE}x${KERNEL_TILE}__neonfp16arith${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
size_t channels,
size_t output_width,
const void** input,
const void* weights,
void* output_ptr,
size_t input_stride,
size_t output_increment,
size_t input_offset,
const void* zero,
const struct xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_DISABLE_TSAN
{
assert(channels != 0);
assert(output_width != 0);
__fp16* output = ( __fp16*) output_ptr;
const float16x8_t vmax = vld1q_dup_f16(&params->max);
const float16x8_t vmin = vld1q_dup_f16(&params->min);
do {
$for K in range(KERNEL_TILE):
const __fp16* i${K} = (const __fp16*) input[${K}];
assert(i${K} != NULL);
if XNN_UNPREDICTABLE(i${K} != (const __fp16*) zero) {
i${K} = (const __fp16*) ((uintptr_t) i${K} + input_offset);
}
input = (const void**) ((uintptr_t) input + input_stride);
size_t c = channels;
const __fp16* w = (const __fp16*) weights;
for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) {
$for C in range(0, CHANNEL_TILE, 8):
float16x8_t vacc${ABC[C:C+8]}p0 = vld1q_f16(w); w += 8;
$for K in range(KERNEL_TILE):
$for C in range(0, CHANNEL_TILE, 8):
const float16x8_t vi${K}x${ABC[C:C+8]} = vld1q_f16(i${K}); i${K} += 8;
$for C in range(0, CHANNEL_TILE, 8):
const float16x8_t vk${K}x${ABC[C:C+8]} = vld1q_f16(w); w += 8;
$for C in range(0, CHANNEL_TILE, 8):
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc${ABC[C:C+8]}p${K} = vmulq_f16(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$else:
vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = vfmaq_f16(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]});
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]}p${A} = vaddq_f16(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_STEP});
$ACC_STEP *= 2
$for C in range(0, CHANNEL_TILE, 8):
float16x8_t vacc${ABC[C:C+8]} = vmaxq_f16(vacc${ABC[C:C+8]}p0, vmin);
$for C in range(0, CHANNEL_TILE, 8):
vacc${ABC[C:C+8]} = vminq_f16(vacc${ABC[C:C+8]}, vmax);
$for C in range(0, CHANNEL_TILE, 8):
vst1q_f16(output, vacc${ABC[C:C+8]}); output += 8;
}
$if CHANNEL_TILE > 8:
for (; c >= 8; c -= 8) {
float16x8_t vacc01234567p0 = vld1q_f16(w); w += 8;
$for K in range(KERNEL_TILE):
const float16x8_t vi${K}x01234567 = vld1q_f16(i${K}); i${K} += 8;
const float16x8_t vk${K}x01234567 = vld1q_f16(w + ${(K + 1) * CHANNEL_TILE - 8});
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567);
$else:
vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP});
$ACC_STEP *= 2
float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
vacc01234567 = vminq_f16(vacc01234567, vmax);
vst1q_f16(output, vacc01234567); output += 8;
}
if XNN_UNLIKELY(c != 0) {
$if CHANNEL_TILE == 8:
float16x8_t vacc01234567p0 = vld1q_f16(w); w += 8;
$else:
float16x8_t vacc01234567p0 = vld1q_f16(w);
$for K in range(KERNEL_TILE):
const float16x8_t vi${K}x01234567 = vld1q_f16(i${K});
$if CHANNEL_TILE == 8:
const float16x8_t vk${K}x01234567 = vld1q_f16(w); w += 8;
$else:
const float16x8_t vk${K}x01234567 = vld1q_f16(w + ${(K + 1) * CHANNEL_TILE});
$if 1 <= K < ACCUMULATORS:
float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567);
$else:
vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567);
$if ACCUMULATORS > 1:
// Add up all accumulators to vacc01234567p0
$ACC_STEP = 1
$while ACC_STEP < ACCUMULATORS:
$for A in range(0, ACCUMULATORS, ACC_STEP * 2):
$if A + ACC_STEP < ACCUMULATORS:
vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP});
$ACC_STEP *= 2
float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin);
vacc01234567 = vminq_f16(vacc01234567, vmax);
float16x4_t vacc0123 = vget_low_f16(vacc01234567);
if (c & 4) {
vst1_f16(output, vacc0123); output += 4;
vacc0123 = vget_high_f16(vacc01234567);
}
if (c & 2) {
vst1_lane_u32(__builtin_assume_aligned(output, 1), vreinterpret_u32_f16(vacc0123), 0); output += 2;
vacc0123 = vext_f16(vacc0123, vacc0123, 2);
}
if (c & 1) {
vst1_lane_f16(output, vacc0123, 0); output += 1;
}
}
output = (__fp16*) ((uintptr_t) output + output_increment);
} while (--output_width != 0);
}