blob: 55527b82ba98c8de9c6cc22d5d249f1ee72e6a60 [file] [log] [blame]
/*
* \file trc_pkt_decode_etmv4i.cpp
* \brief OpenCSD : ETMv4 decoder
*
* \copyright Copyright (c) 2015, ARM Limited. All Rights Reserved.
*/
/*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opencsd/etmv4/trc_pkt_decode_etmv4i.h"
#include "common/trc_gen_elem.h"
#define DCD_NAME "DCD_ETMV4"
static const uint32_t ETMV4_SUPPORTED_DECODE_OP_FLAGS = OCSD_OPFLG_PKTDEC_COMMON;
TrcPktDecodeEtmV4I::TrcPktDecodeEtmV4I()
: TrcPktDecodeBase(DCD_NAME)
{
initDecoder();
}
TrcPktDecodeEtmV4I::TrcPktDecodeEtmV4I(int instIDNum)
: TrcPktDecodeBase(DCD_NAME,instIDNum)
{
initDecoder();
}
TrcPktDecodeEtmV4I::~TrcPktDecodeEtmV4I()
{
}
/*********************** implementation packet decoding interface */
ocsd_datapath_resp_t TrcPktDecodeEtmV4I::processPacket()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
ocsd_err_t err = OCSD_OK;
bool bPktDone = false;
while(!bPktDone)
{
switch (m_curr_state)
{
case NO_SYNC:
// output the initial not synced packet to the sink
err = m_out_elem.resetElemStack();
if (!err)
err = m_out_elem.addElemType(m_index_curr_pkt, OCSD_GEN_TRC_ELEM_NO_SYNC);
if (!err)
{
outElem().setUnSyncEOTReason(m_unsync_eot_info);
resp = m_out_elem.sendElements();
m_curr_state = WAIT_SYNC;
}
else
resp = OCSD_RESP_FATAL_SYS_ERR;
// fall through to check if the current packet is the async we are waiting for.
break;
case WAIT_SYNC:
if(m_curr_packet_in->getType() == ETM4_PKT_I_ASYNC)
m_curr_state = WAIT_TINFO;
bPktDone = true;
break;
case WAIT_TINFO:
m_need_ctxt = true;
m_need_addr = true;
if(m_curr_packet_in->getType() == ETM4_PKT_I_TRACE_INFO)
{
doTraceInfoPacket();
m_curr_state = DECODE_PKTS;
m_return_stack.flush();
}
bPktDone = true;
break;
case DECODE_PKTS:
// this may change the state to RESOLVE_ELEM if required;
err = decodePacket();
if (err)
{
#ifdef OCSD_WARN_UNSUPPORTED
if (err == OCSD_ERR_UNSUPP_DECODE_PKT)
resp = OCSD_RESP_WARN_CONT;
else
#else
resp = OCSD_RESP_FATAL_INVALID_DATA;
#endif
bPktDone = true;
}
else if (m_curr_state != RESOLVE_ELEM)
bPktDone = true;
break;
case RESOLVE_ELEM:
// this will change the state to DECODE_PKTS once required elem resolved &
// needed generic packets output
resp = resolveElements();
if ((m_curr_state == DECODE_PKTS) || (!OCSD_DATA_RESP_IS_CONT(resp)))
bPktDone = true;
break;
}
}
return resp;
}
ocsd_datapath_resp_t TrcPktDecodeEtmV4I::onEOT()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
ocsd_err_t err;
if ((err = commitElemOnEOT()) != OCSD_OK)
{
resp = OCSD_RESP_FATAL_INVALID_DATA;
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, "Error flushing element stack at end of trace data."));
}
else
resp = m_out_elem.sendElements();
return resp;
}
ocsd_datapath_resp_t TrcPktDecodeEtmV4I::onReset()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
m_unsync_eot_info = UNSYNC_RESET_DECODER;
resetDecoder();
return resp;
}
ocsd_datapath_resp_t TrcPktDecodeEtmV4I::onFlush()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
if (m_curr_state == RESOLVE_ELEM)
resp = resolveElements();
else
resp = m_out_elem.sendElements();
return resp;
}
ocsd_err_t TrcPktDecodeEtmV4I::onProtocolConfig()
{
ocsd_err_t err = OCSD_OK;
// set some static config elements
m_CSID = m_config->getTraceID();
m_max_spec_depth = m_config->MaxSpecDepth();
// elements associated with data trace
#ifdef DATA_TRACE_SUPPORTED
m_p0_key_max = m_config->P0_Key_Max();
m_cond_key_max_incr = m_config->CondKeyMaxIncr();
#endif
m_out_elem.initCSID(m_CSID);
// set up static trace instruction decode elements
m_instr_info.dsb_dmb_waypoints = 0;
m_instr_info.wfi_wfe_branch = m_config->wfiwfeBranch() ? 1 : 0;
m_instr_info.pe_type.arch = m_config->archVersion();
m_instr_info.pe_type.profile = m_config->coreProfile();
m_IASize64 = (m_config->iaSizeMax() == 64);
if (m_config->enabledRetStack())
{
m_return_stack.set_active(true);
#ifdef TRC_RET_STACK_DEBUG
m_return_stack.set_dbg_logger(this);
#endif
}
// check config compatible with current decoder support level.
// at present no data trace, no spec depth, no return stack, no QE
// Remove these checks as support is added.
if(m_config->enabledDataTrace())
{
err = OCSD_ERR_HW_CFG_UNSUPP;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_HW_CFG_UNSUPP,"ETMv4 instruction decode : Data trace elements not supported"));
}
else if(m_config->enabledLSP0Trace())
{
err = OCSD_ERR_HW_CFG_UNSUPP;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_HW_CFG_UNSUPP,"ETMv4 instruction decode : LSP0 elements not supported."));
}
else if(m_config->enabledCondITrace() != EtmV4Config::COND_TR_DIS)
{
err = OCSD_ERR_HW_CFG_UNSUPP;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_HW_CFG_UNSUPP,"ETMv4 instruction decode : Trace on conditional non-branch elements not supported."));
}
return err;
}
/************* local decode methods */
void TrcPktDecodeEtmV4I::initDecoder()
{
// set the operational modes supported.
m_supported_op_flags = ETMV4_SUPPORTED_DECODE_OP_FLAGS;
/* init elements that get set by config */
m_max_spec_depth = 0;
m_CSID = 0;
m_IASize64 = false;
// elements associated with data trace
#ifdef DATA_TRACE_SUPPORTED
m_p0_key_max = 0;
m_cond_key_max_incr = 0;
#endif
// reset decoder state to unsynced
m_unsync_eot_info = UNSYNC_INIT_DECODER;
resetDecoder();
}
void TrcPktDecodeEtmV4I::resetDecoder()
{
m_curr_state = NO_SYNC;
m_timestamp = 0;
m_context_id = 0;
m_vmid_id = 0;
m_is_secure = true;
m_is_64bit = false;
m_cc_threshold = 0;
m_curr_spec_depth = 0;
m_need_ctxt = true;
m_need_addr = true;
m_elem_pending_addr = false;
m_prev_overflow = false;
m_P0_stack.delete_all();
m_out_elem.resetElemStack();
m_last_IS = 0;
clearElemRes();
// elements associated with data trace
#ifdef DATA_TRACE_SUPPORTED
m_p0_key = 0;
m_cond_c_key = 0;
m_cond_r_key = 0;
#endif
}
void TrcPktDecodeEtmV4I::onFirstInitOK()
{
// once init, set the output element interface to the out elem list.
m_out_elem.initSendIf(this->getTraceElemOutAttachPt());
}
// Changes a packet into stack of trace elements - these will be resolved and output later
ocsd_err_t TrcPktDecodeEtmV4I::decodePacket()
{
ocsd_err_t err = OCSD_OK;
bool bAllocErr = false;
bool is_addr = false;
switch(m_curr_packet_in->getType())
{
case ETM4_PKT_I_ASYNC: // nothing to do with this packet.
case ETM4_PKT_I_IGNORE: // or this one.
break;
case ETM4_PKT_I_TRACE_INFO:
// skip subsequent TInfo packets.
m_return_stack.flush();
break;
case ETM4_PKT_I_TRACE_ON:
{
if (m_P0_stack.createParamElemNoParam(P0_TRC_ON, false, m_curr_packet_in->getType(), m_index_curr_pkt) == 0)
bAllocErr = true;
}
break;
case ETM4_PKT_I_ATOM_F1:
case ETM4_PKT_I_ATOM_F2:
case ETM4_PKT_I_ATOM_F3:
case ETM4_PKT_I_ATOM_F4:
case ETM4_PKT_I_ATOM_F5:
case ETM4_PKT_I_ATOM_F6:
{
if (m_P0_stack.createAtomElem(m_curr_packet_in->getType(), m_index_curr_pkt, m_curr_packet_in->getAtom()) == 0)
bAllocErr = true;
else
m_curr_spec_depth += m_curr_packet_in->getAtom().num;
}
break;
case ETM4_PKT_I_CTXT:
{
if (m_P0_stack.createContextElem(m_curr_packet_in->getType(), m_index_curr_pkt, m_curr_packet_in->getContext(), m_last_IS) == 0)
bAllocErr = true;
}
break;
case ETM4_PKT_I_ADDR_MATCH:
{
etmv4_addr_val_t addr;
addr.val = m_curr_packet_in->getAddrVal();
addr.isa = m_last_IS = m_curr_packet_in->getAddrIS();
if (m_P0_stack.createAddrElem(m_curr_packet_in->getType(), m_index_curr_pkt, addr) == 0)
bAllocErr = true;
is_addr = true;
}
break;
case ETM4_PKT_I_ADDR_CTXT_L_64IS0:
case ETM4_PKT_I_ADDR_CTXT_L_64IS1:
case ETM4_PKT_I_ADDR_CTXT_L_32IS0:
case ETM4_PKT_I_ADDR_CTXT_L_32IS1:
{
m_last_IS = m_curr_packet_in->getAddrIS();
if (m_P0_stack.createContextElem(m_curr_packet_in->getType(), m_index_curr_pkt, m_curr_packet_in->getContext(), m_last_IS) == 0)
bAllocErr = true;
}
case ETM4_PKT_I_ADDR_L_32IS0:
case ETM4_PKT_I_ADDR_L_32IS1:
case ETM4_PKT_I_ADDR_L_64IS0:
case ETM4_PKT_I_ADDR_L_64IS1:
case ETM4_PKT_I_ADDR_S_IS0:
case ETM4_PKT_I_ADDR_S_IS1:
{
etmv4_addr_val_t addr;
addr.val = m_curr_packet_in->getAddrVal();
addr.isa = m_last_IS = m_curr_packet_in->getAddrIS();
if (m_P0_stack.createAddrElem(m_curr_packet_in->getType(), m_index_curr_pkt, addr) == 0)
bAllocErr = true;
is_addr = true; // may be waiting for target address from indirect branch
}
break;
case ETE_PKT_I_SRC_ADDR_MATCH:
case ETE_PKT_I_SRC_ADDR_S_IS0:
case ETE_PKT_I_SRC_ADDR_S_IS1:
case ETE_PKT_I_SRC_ADDR_L_32IS0:
case ETE_PKT_I_SRC_ADDR_L_32IS1:
case ETE_PKT_I_SRC_ADDR_L_64IS0:
case ETE_PKT_I_SRC_ADDR_L_64IS1:
{
etmv4_addr_val_t addr;
addr.val = m_curr_packet_in->getAddrVal();
addr.isa = m_curr_packet_in->getAddrIS();
if (m_P0_stack.createSrcAddrElem(m_curr_packet_in->getType(), m_index_curr_pkt, addr) == 0)
bAllocErr = true;
m_curr_spec_depth++;
}
break;
// Exceptions
case ETM4_PKT_I_EXCEPT:
{
if (m_P0_stack.createExceptElem(m_curr_packet_in->getType(), m_index_curr_pkt,
(m_curr_packet_in->exception_info.addr_interp == 0x2),
m_curr_packet_in->exception_info.exceptionType) == 0)
bAllocErr = true;
else
m_elem_pending_addr = true; // wait for following packets before marking for commit.
}
break;
case ETM4_PKT_I_EXCEPT_RTN:
{
// P0 element if V7M profile.
bool bV7MProfile = (m_config->archVersion() == ARCH_V7) && (m_config->coreProfile() == profile_CortexM);
if (m_P0_stack.createParamElemNoParam(P0_EXCEP_RET, bV7MProfile, m_curr_packet_in->getType(), m_index_curr_pkt) == 0)
bAllocErr = true;
else if (bV7MProfile)
m_curr_spec_depth++;
}
break;
case ETM4_PKT_I_FUNC_RET:
{
// P0 element iff V8M profile, otherwise ignore
if (OCSD_IS_V8_ARCH(m_config->archVersion()) && (m_config->coreProfile() == profile_CortexM))
{
if (m_P0_stack.createParamElemNoParam(P0_FUNC_RET, true, m_curr_packet_in->getType(), m_index_curr_pkt) == 0)
bAllocErr = true;
else
m_curr_spec_depth++;
}
}
break;
// event trace
case ETM4_PKT_I_EVENT:
{
std::vector<uint32_t> params = { 0 };
params[0] = (uint32_t)m_curr_packet_in->event_val;
if (m_P0_stack.createParamElem(P0_EVENT, false, m_curr_packet_in->getType(), m_index_curr_pkt, params) == 0)
bAllocErr = true;
}
break;
/* cycle count packets */
case ETM4_PKT_I_CCNT_F1:
case ETM4_PKT_I_CCNT_F2:
case ETM4_PKT_I_CCNT_F3:
{
std::vector<uint32_t> params = { 0 };
params[0] = m_curr_packet_in->getCC();
if (m_P0_stack.createParamElem(P0_CC, false, m_curr_packet_in->getType(), m_index_curr_pkt, params) == 0)
bAllocErr = true;
}
break;
// timestamp
case ETM4_PKT_I_TIMESTAMP:
{
bool bTSwithCC = m_config->enabledCCI();
uint64_t ts = m_curr_packet_in->getTS();
std::vector<uint32_t> params = { 0, 0, 0 };
params[0] = (uint32_t)(ts & 0xFFFFFFFF);
params[1] = (uint32_t)((ts >> 32) & 0xFFFFFFFF);
if (bTSwithCC)
params[2] = m_curr_packet_in->getCC();
if (m_P0_stack.createParamElem(bTSwithCC ? P0_TS_CC : P0_TS, false, m_curr_packet_in->getType(), m_index_curr_pkt, params) == 0)
bAllocErr = true;
}
break;
case ETM4_PKT_I_BAD_SEQUENCE:
err = handleBadPacket("Bad byte sequence in packet.");
break;
case ETM4_PKT_I_BAD_TRACEMODE:
err = handleBadPacket("Invalid packet type for trace mode.");
break;
case ETM4_PKT_I_RESERVED:
err = handleBadPacket("Reserved packet header");
break;
// speculation
case ETM4_PKT_I_MISPREDICT:
case ETM4_PKT_I_CANCEL_F1_MISPRED:
case ETM4_PKT_I_CANCEL_F2:
case ETM4_PKT_I_CANCEL_F3:
m_elem_res.mispredict = true;
if (m_curr_packet_in->getNumAtoms())
{
if (m_P0_stack.createAtomElem(m_curr_packet_in->getType(), m_index_curr_pkt, m_curr_packet_in->getAtom()) == 0)
bAllocErr = true;
else
m_curr_spec_depth += m_curr_packet_in->getNumAtoms();
}
case ETM4_PKT_I_CANCEL_F1:
m_elem_res.P0_cancel = m_curr_packet_in->getCancelElem();
break;
case ETM4_PKT_I_COMMIT:
m_elem_res.P0_commit = m_curr_packet_in->getCommitElem();
break;
case ETM4_PKT_I_OVERFLOW:
m_prev_overflow = true;
case ETM4_PKT_I_DISCARD:
m_curr_spec_depth = 0;
m_elem_res.discard = true;
break;
/* Q packets */
case ETM4_PKT_I_Q:
{
TrcStackQElem *pQElem = m_P0_stack.createQElem(m_curr_packet_in->getType(), m_index_curr_pkt, m_curr_packet_in->Q_pkt.q_count);
if (pQElem)
{
if (m_curr_packet_in->Q_pkt.addr_present)
{
etmv4_addr_val_t addr;
addr.val = m_curr_packet_in->getAddrVal();
addr.isa = m_curr_packet_in->getAddrIS();
pQElem->setAddr(addr);
m_curr_spec_depth++;
}
else
m_elem_pending_addr = true;
}
else
bAllocErr = true;
}
break;
/*** presently unsupported packets ***/
/* ETE commit window - not supported in current ETE versions - blocked by packet processor */
case ETE_PKT_I_COMMIT_WIN_MV:
err = OCSD_ERR_UNSUPP_DECODE_PKT;
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, "ETE Commit Window Move, unsupported packet type."));
break;
/* conditional instruction tracing */
case ETM4_PKT_I_COND_FLUSH:
case ETM4_PKT_I_COND_I_F1:
case ETM4_PKT_I_COND_I_F2:
case ETM4_PKT_I_COND_I_F3:
case ETM4_PKT_I_COND_RES_F1:
case ETM4_PKT_I_COND_RES_F2:
case ETM4_PKT_I_COND_RES_F3:
case ETM4_PKT_I_COND_RES_F4:
// data synchronisation markers
case ETM4_PKT_I_NUM_DS_MKR:
case ETM4_PKT_I_UNNUM_DS_MKR:
// all currently unsupported
{
ocsd_err_severity_t sev = OCSD_ERR_SEV_ERROR;
#ifdef OCSD_WARN_UNSUPPORTED
sev = OCSD_ERR_SEV_WARN;
//resp = OCSD_RESP_WARN_CONT;
#else
//resp = OCSD_RESP_FATAL_INVALID_DATA;
#endif
err = OCSD_ERR_UNSUPP_DECODE_PKT;
LogError(ocsdError(sev, err, "Data trace related, unsupported packet type."));
}
break;
default:
// any other packet - bad packet error
err = OCSD_ERR_BAD_DECODE_PKT;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,err,"Unknown packet type."));
break;
}
// we need to wait for following address after certain packets
// - work out if we have seen enough here...
if (is_addr && m_elem_pending_addr)
{
m_curr_spec_depth++; // increase spec depth for element waiting on address.
m_elem_pending_addr = false; // can't be waiting on both
}
if(bAllocErr)
{
err = OCSD_ERR_MEM;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_MEM,"Memory allocation error."));
}
else if(m_curr_spec_depth > m_max_spec_depth)
{
// auto commit anything above max spec depth
// (this will auto commit anything if spec depth not supported!)
m_elem_res.P0_commit = m_curr_spec_depth - m_max_spec_depth;
}
if (!err && isElemForRes())
m_curr_state = RESOLVE_ELEM;
return err;
}
void TrcPktDecodeEtmV4I::doTraceInfoPacket()
{
m_trace_info = m_curr_packet_in->getTraceInfo();
m_cc_threshold = m_curr_packet_in->getCCThreshold();
m_curr_spec_depth = m_curr_packet_in->getCurrSpecDepth();
// elements associated with data trace
#ifdef DATA_TRACE_SUPPORTED
m_p0_key = m_curr_packet_in->getP0Key();
#endif
}
/* Element resolution
* Commit or cancel elements as required
* Send any buffered output packets.
*/
ocsd_datapath_resp_t TrcPktDecodeEtmV4I::resolveElements()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
bool Complete = false;
while (!Complete)
{
if (m_out_elem.numElemToSend())
resp = m_out_elem.sendElements();
else if (isElemForRes())
{
ocsd_err_t err = OCSD_OK;
if (m_elem_res.P0_commit)
err = commitElements();
if (!err && m_elem_res.P0_cancel)
err = cancelElements();
if (!err && m_elem_res.mispredict)
err = mispredictAtom();
if (!err && m_elem_res.discard)
err = discardElements();
if (err != OCSD_OK)
resp = OCSD_RESP_FATAL_INVALID_DATA;
}
// break out on error or wait request.
if (!OCSD_DATA_RESP_IS_CONT(resp))
break;
// completion is nothing to send and nothing to commit
Complete = !m_out_elem.numElemToSend() && !isElemForRes();
// done all elements - need more packets.
if (Complete) {
// if we are still in resolve, the goto decode.
if (m_curr_state == RESOLVE_ELEM)
m_curr_state = DECODE_PKTS;
}
}
return resp;
}
/*
* Walks through the element stack, processing from oldest element to the newest,
according to the number of P0 elements that need committing.
Build a stack of output elements in the process.
*/
ocsd_err_t TrcPktDecodeEtmV4I::commitElements()
{
ocsd_err_t err = OCSD_OK;
bool bPopElem = true; // do we remove the element from the stack (multi atom elements may need to stay!)
int num_commit_req = m_elem_res.P0_commit;
ocsd_trc_index_t err_idx = 0;
TrcStackElem *pElem = 0; // stacked element pointer
err = m_out_elem.resetElemStack();
while(m_elem_res.P0_commit && !err)
{
if (m_P0_stack.size() > 0)
{
pElem = m_P0_stack.back(); // get oldest element
err_idx = pElem->getRootIndex(); // save index in case of error.
switch (pElem->getP0Type())
{
// indicates a trace restart - beginning of trace or discontinuiuty
case P0_TRC_ON:
err = m_out_elem.addElemType(pElem->getRootIndex(), OCSD_GEN_TRC_ELEM_TRACE_ON);
if (!err)
{
m_out_elem.getCurrElem().trace_on_reason = m_prev_overflow ? TRACE_ON_OVERFLOW : TRACE_ON_NORMAL;
m_prev_overflow = false;
m_return_stack.flush();
}
break;
case P0_ADDR:
{
TrcStackElemAddr *pAddrElem = dynamic_cast<TrcStackElemAddr *>(pElem);
m_return_stack.clear_pop_pending(); // address removes the need to pop the indirect address target from the stack
if(pAddrElem)
{
SetInstrInfoInAddrISA(pAddrElem->getAddr().val, pAddrElem->getAddr().isa);
m_need_addr = false;
}
}
break;
case P0_CTXT:
{
TrcStackElemCtxt *pCtxtElem = dynamic_cast<TrcStackElemCtxt *>(pElem);
if(pCtxtElem)
{
etmv4_context_t ctxt = pCtxtElem->getContext();
// check this is an updated context
if(ctxt.updated)
{
err = m_out_elem.addElem(pElem->getRootIndex());
if (!err)
updateContext(pCtxtElem, outElem());
}
}
}
break;
case P0_EVENT:
case P0_TS:
case P0_CC:
case P0_TS_CC:
err = processTS_CC_EventElem(pElem);
break;
case P0_MARKER:
err = processMarkerElem(pElem);
break;
case P0_ATOM:
{
TrcStackElemAtom *pAtomElem = dynamic_cast<TrcStackElemAtom *>(pElem);
if(pAtomElem)
{
while(!pAtomElem->isEmpty() && m_elem_res.P0_commit && !err)
{
ocsd_atm_val atom = pAtomElem->commitOldest();
// check if prev atom left us an indirect address target on the return stack
if ((err = returnStackPop()) != OCSD_OK)
break;
// if address and context do instruction trace follower.
// otherwise skip atom and reduce committed elements
if(!m_need_ctxt && !m_need_addr)
{
err = processAtom(atom);
}
m_elem_res.P0_commit--; // mark committed
}
if(!pAtomElem->isEmpty())
bPopElem = false; // don't remove if still atoms to process.
}
}
break;
case P0_EXCEP:
// check if prev atom left us an indirect address target on the return stack
if ((err = returnStackPop()) != OCSD_OK)
break;
err = processException(); // output trace + exception elements.
m_elem_res.P0_commit--;
break;
case P0_EXCEP_RET:
err = m_out_elem.addElemType(pElem->getRootIndex(), OCSD_GEN_TRC_ELEM_EXCEPTION_RET);
if (!err)
{
if (pElem->isP0()) // are we on a core that counts ERET as P0?
m_elem_res.P0_commit--;
}
break;
case P0_FUNC_RET:
// func ret is V8M - data trace only - hint that data has been popped off the stack.
// at this point nothing to do till the decoder starts handling data trace.
if (pElem->isP0())
m_elem_res.P0_commit--;
break;
case P0_SRC_ADDR:
err = processSourceAddress();
m_elem_res.P0_commit--;
break;
case P0_Q:
err = processQElement();
m_elem_res.P0_commit--;
break;
}
if(bPopElem)
m_P0_stack.delete_back(); // remove element from stack;
}
else
{
// too few elements for commit operation - decode error.
err = OCSD_ERR_COMMIT_PKT_OVERRUN;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_COMMIT_PKT_OVERRUN,err_idx,m_CSID,"Not enough elements to commit"));
}
}
// reduce the spec depth by number of comitted elements
m_curr_spec_depth -= (num_commit_req-m_elem_res.P0_commit);
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::returnStackPop()
{
ocsd_err_t err = OCSD_OK;
ocsd_isa nextISA;
if (m_return_stack.pop_pending())
{
ocsd_vaddr_t popAddr = m_return_stack.pop(nextISA);
if (m_return_stack.overflow())
{
err = OCSD_ERR_RET_STACK_OVERFLOW;
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, "Trace Return Stack Overflow."));
}
else
{
m_instr_info.instr_addr = popAddr;
m_instr_info.isa = nextISA;
m_need_addr = false;
}
}
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::commitElemOnEOT()
{
ocsd_err_t err = OCSD_OK;
TrcStackElem *pElem = 0;
// nothing outstanding - reset the stack before we add more
if (!m_out_elem.numElemToSend())
m_out_elem.resetElemStack();
while((m_P0_stack.size() > 0) && !err)
{
// scan for outstanding events, TS and CC, that appear before any outstanding
// uncommited P0 element.
pElem = m_P0_stack.back();
switch(pElem->getP0Type())
{
// clear stack and stop
case P0_UNKNOWN:
case P0_ATOM:
case P0_TRC_ON:
case P0_EXCEP:
case P0_EXCEP_RET:
case P0_OVERFLOW:
case P0_Q:
m_P0_stack.delete_all();
break;
//skip
case P0_ADDR:
case P0_CTXT:
break;
// output
case P0_EVENT:
case P0_TS:
case P0_CC:
case P0_TS_CC:
err = processTS_CC_EventElem(pElem);
break;
case P0_MARKER:
err = processMarkerElem(pElem);
break;
}
m_P0_stack.delete_back();
}
if(!err)
{
err = m_out_elem.addElemType(m_index_curr_pkt, OCSD_GEN_TRC_ELEM_EO_TRACE);
outElem().setUnSyncEOTReason(m_prev_overflow ? UNSYNC_OVERFLOW : UNSYNC_EOT);
}
return err;
}
// cancel elements. These not output
ocsd_err_t TrcPktDecodeEtmV4I::cancelElements()
{
ocsd_err_t err = OCSD_OK;
bool P0StackDone = false; // checked all P0 elements on the stack
TrcStackElem *pElem = 0; // stacked element pointer
EtmV4P0Stack temp;
int num_cancel_req = m_elem_res.P0_cancel;
while (m_elem_res.P0_cancel)
{
//search the stack for the newest elements
if (!P0StackDone)
{
if (m_P0_stack.size() == 0)
P0StackDone = true;
else
{
// get the newest element
pElem = m_P0_stack.front();
if (pElem->isP0()) {
if (pElem->getP0Type() == P0_ATOM)
{
TrcStackElemAtom *pAtomElem = (TrcStackElemAtom *)pElem;
// atom - cancel N atoms
m_elem_res.P0_cancel -= pAtomElem->cancelNewest(m_elem_res.P0_cancel);
if (pAtomElem->isEmpty())
m_P0_stack.delete_front(); // remove the element
}
else
{
m_elem_res.P0_cancel--;
m_P0_stack.delete_front(); // remove the element
}
} else {
// not P0, make a keep / remove decision
switch (pElem->getP0Type())
{
// keep these
case P0_EVENT:
case P0_TS:
case P0_CC:
case P0_TS_CC:
case P0_MARKER:
m_P0_stack.pop_front(false);
temp.push_back(pElem);
break;
default:
m_P0_stack.delete_front();
break;
}
}
}
}
// may have some unseen elements
else if (m_unseen_spec_elem)
{
m_unseen_spec_elem--;
m_elem_res.P0_cancel--;
}
// otherwise we have some sort of overrun
else
{
// too few elements for commit operation - decode error.
err = OCSD_ERR_COMMIT_PKT_OVERRUN;
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, m_index_curr_pkt, m_CSID, "Not enough elements to cancel"));
m_elem_res.P0_cancel = 0;
break;
}
if (temp.size())
{
while (temp.size())
{
pElem = temp.back();
m_P0_stack.push_front(pElem);
temp.pop_back(false);
}
}
}
m_curr_spec_depth -= num_cancel_req - m_elem_res.P0_cancel;
return err;
}
// mispredict an atom
ocsd_err_t TrcPktDecodeEtmV4I::mispredictAtom()
{
ocsd_err_t err = OCSD_OK;
bool bFoundAtom = false, bDone = false;
TrcStackElem *pElem = 0;
m_P0_stack.from_front_init(); // init iterator at front.
while (!bDone)
{
pElem = m_P0_stack.from_front_next();
if (pElem)
{
if (pElem->getP0Type() == P0_ATOM)
{
TrcStackElemAtom *pAtomElem = dynamic_cast<TrcStackElemAtom *>(pElem);
if (pAtomElem)
{
pAtomElem->mispredictNewest();
bFoundAtom = true;
}
bDone = true;
}
else if (pElem->getP0Type() == P0_ADDR)
{
// need to disregard any addresses that appear between mispredict and the atom in question
m_P0_stack.erase_curr_from_front();
}
}
else
bDone = true;
}
// if missed atom then either overrun error or mispredict on unseen element
if (!bFoundAtom && !m_unseen_spec_elem)
{
err = OCSD_ERR_COMMIT_PKT_OVERRUN;
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, m_index_curr_pkt, m_CSID, "Not found mispredict atom"));
}
m_elem_res.mispredict = false;
return err;
}
// discard elements and flush
ocsd_err_t TrcPktDecodeEtmV4I::discardElements()
{
ocsd_err_t err = OCSD_OK;
TrcStackElem *pElem = 0; // stacked element pointer
// dump P0, elemnts - output remaining CC / TS
while ((m_P0_stack.size() > 0) && !err)
{
pElem = m_P0_stack.back();
if (pElem->getP0Type() == P0_MARKER)
err = processMarkerElem(pElem);
else
err = processTS_CC_EventElem(pElem);
m_P0_stack.delete_back();
}
// clear all speculation info
clearElemRes();
m_curr_spec_depth = 0;
// set decode state
m_curr_state = NO_SYNC;
m_unsync_eot_info = m_prev_overflow ? UNSYNC_OVERFLOW : UNSYNC_DISCARD;
// unsync so need context & address.
m_need_ctxt = true;
m_need_addr = true;
m_elem_pending_addr = false;
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::processTS_CC_EventElem(TrcStackElem *pElem)
{
ocsd_err_t err = OCSD_OK;
switch (pElem->getP0Type())
{
case P0_EVENT:
{
TrcStackElemParam *pParamElem = dynamic_cast<TrcStackElemParam *>(pElem);
if (pParamElem)
err = addElemEvent(pParamElem);
}
break;
case P0_TS:
{
TrcStackElemParam *pParamElem = dynamic_cast<TrcStackElemParam *>(pElem);
if (pParamElem)
err = addElemTS(pParamElem, false);
}
break;
case P0_CC:
{
TrcStackElemParam *pParamElem = dynamic_cast<TrcStackElemParam *>(pElem);
if (pParamElem)
err = addElemCC(pParamElem);
}
break;
case P0_TS_CC:
{
TrcStackElemParam *pParamElem = dynamic_cast<TrcStackElemParam *>(pElem);
if (pParamElem)
err = addElemTS(pParamElem, true);
}
break;
}
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::processMarkerElem(TrcStackElem *pElem)
{
ocsd_err_t err = OCSD_OK;
TrcStackElemMarker *pMarkerElem = dynamic_cast<TrcStackElemMarker *>(pElem);
if (!err)
{
err = m_out_elem.addElemType(pElem->getRootIndex(), OCSD_GEN_TRC_ELEM_SYNC_MARKER);
if (!err)
m_out_elem.getCurrElem().setSyncMarker(pMarkerElem->getMarker());
}
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::addElemCC(TrcStackElemParam *pParamElem)
{
ocsd_err_t err = OCSD_OK;
err = m_out_elem.addElemType(pParamElem->getRootIndex(), OCSD_GEN_TRC_ELEM_CYCLE_COUNT);
if (!err)
outElem().setCycleCount(pParamElem->getParam(0));
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::addElemTS(TrcStackElemParam *pParamElem, bool withCC)
{
ocsd_err_t err = OCSD_OK;
err = m_out_elem.addElemType(pParamElem->getRootIndex(), OCSD_GEN_TRC_ELEM_TIMESTAMP);
if (!err)
{
outElem().timestamp = (uint64_t)(pParamElem->getParam(0)) | (((uint64_t)pParamElem->getParam(1)) << 32);
if (withCC)
outElem().setCycleCount(pParamElem->getParam(2));
}
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::addElemEvent(TrcStackElemParam *pParamElem)
{
ocsd_err_t err = OCSD_OK;
err = m_out_elem.addElemType(pParamElem->getRootIndex(), OCSD_GEN_TRC_ELEM_EVENT);
if (!err)
{
outElem().trace_event.ev_type = EVENT_NUMBERED;
outElem().trace_event.ev_number = pParamElem->getParam(0);
}
return err;
}
void TrcPktDecodeEtmV4I::setElemTraceRange(OcsdTraceElement &elemIn, const instr_range_t &addr_range,
const bool executed, ocsd_trc_index_t index)
{
elemIn.setType(OCSD_GEN_TRC_ELEM_INSTR_RANGE);
elemIn.setLastInstrInfo(executed, m_instr_info.type, m_instr_info.sub_type, m_instr_info.instr_size);
elemIn.setISA(m_instr_info.isa);
elemIn.setLastInstrCond(m_instr_info.is_conditional);
elemIn.setAddrRange(addr_range.st_addr, addr_range.en_addr, addr_range.num_instr);
if (executed)
m_instr_info.isa = m_instr_info.next_isa;
}
ocsd_err_t TrcPktDecodeEtmV4I::processAtom(const ocsd_atm_val atom)
{
ocsd_err_t err;
TrcStackElem *pElem = m_P0_stack.back(); // get the atom element
WP_res_t WPRes;
instr_range_t addr_range;
// new element for this processed atom
if ((err = m_out_elem.addElem(pElem->getRootIndex())) != OCSD_OK)
return err;
err = traceInstrToWP(addr_range, WPRes);
if(err != OCSD_OK)
{
if(err == OCSD_ERR_UNSUPPORTED_ISA)
{
m_need_addr = true;
m_need_ctxt = true;
LogError(ocsdError(OCSD_ERR_SEV_WARN,err,pElem->getRootIndex(),m_CSID,"Warning: unsupported instruction set processing atom packet."));
// wait for next context
return OCSD_OK;
}
else
{
LogError(ocsdError(OCSD_ERR_SEV_ERROR,err,pElem->getRootIndex(),m_CSID,"Error processing atom packet."));
return err;
}
}
if(WPFound(WPRes))
{
// save recorded next instuction address
ocsd_vaddr_t nextAddr = m_instr_info.instr_addr;
// action according to waypoint type and atom value
switch(m_instr_info.type)
{
case OCSD_INSTR_BR:
if (atom == ATOM_E)
{
m_instr_info.instr_addr = m_instr_info.branch_addr;
if (m_instr_info.is_link)
m_return_stack.push(nextAddr, m_instr_info.isa);
}
break;
case OCSD_INSTR_BR_INDIRECT:
if (atom == ATOM_E)
{
m_need_addr = true; // indirect branch taken - need new address.
if (m_instr_info.is_link)
m_return_stack.push(nextAddr,m_instr_info.isa);
m_return_stack.set_pop_pending(); // need to know next packet before we know what is to happen
}
break;
}
setElemTraceRange(outElem(), addr_range, (atom == ATOM_E), pElem->getRootIndex());
}
else
{
// no waypoint - likely inaccessible memory range.
m_need_addr = true; // need an address update
if(addr_range.st_addr != addr_range.en_addr)
{
// some trace before we were out of memory access range
setElemTraceRange(outElem(), addr_range, true, pElem->getRootIndex());
// another element for the nacc...
if (WPNacc(WPRes))
err = m_out_elem.addElem(pElem->getRootIndex());
}
if(WPNacc(WPRes) && !err)
{
outElem().setType(OCSD_GEN_TRC_ELEM_ADDR_NACC);
outElem().st_addr = m_instr_info.instr_addr;
}
}
return err;
}
// Exception processor
ocsd_err_t TrcPktDecodeEtmV4I::processException()
{
ocsd_err_t err;
TrcStackElem *pElem = 0;
TrcStackElemExcept *pExceptElem = 0;
TrcStackElemAddr *pAddressElem = 0;
TrcStackElemCtxt *pCtxtElem = 0;
bool branch_target = false; // exception address implies prior branch target address
ocsd_vaddr_t excep_ret_addr = 0;
ocsd_trc_index_t excep_pkt_index;
WP_res_t WPRes = WP_NOT_FOUND;
bool ETE_resetPkt = false;
// grab the exception element off the stack
pExceptElem = dynamic_cast<TrcStackElemExcept *>(m_P0_stack.back()); // get the exception element
excep_pkt_index = pExceptElem->getRootIndex();
branch_target = pExceptElem->getPrevSame();
if (pExceptElem->getRootPkt() == ETE_PKT_I_PE_RESET)
ETE_resetPkt = true;
m_P0_stack.pop_back(); // remove the exception element
// ETE reset has no follow up address, the rest of the exceptions do....
if (!ETE_resetPkt)
{
pElem = m_P0_stack.back(); // look at next element.
if (pElem->getP0Type() == P0_CTXT)
{
pCtxtElem = dynamic_cast<TrcStackElemCtxt *>(pElem);
m_P0_stack.pop_back(); // remove the context element
pElem = m_P0_stack.back(); // next one should be an address element
}
if (pElem->getP0Type() != P0_ADDR)
{
// no following address element - indicate processing error.
LogError(ocsdError(OCSD_ERR_SEV_ERROR, OCSD_ERR_BAD_PACKET_SEQ, excep_pkt_index, m_CSID, "Address missing in exception packet."));
return OCSD_ERR_BAD_PACKET_SEQ;
}
else
{
// extract address
pAddressElem = static_cast<TrcStackElemAddr *>(pElem);
excep_ret_addr = pAddressElem->getAddr().val;
// see if there is an address + optional context element implied
// prior to the exception.
if (branch_target)
{
// this was a branch target address - update current setting
bool b64bit = m_instr_info.isa == ocsd_isa_aarch64;
if (pCtxtElem) {
b64bit = pCtxtElem->getContext().SF;
}
// as the exception address was also a branch target address then update the
// current maintained address value. This also means that there is no range to
// output before the exception packet.
m_instr_info.instr_addr = excep_ret_addr;
m_instr_info.isa = (pAddressElem->getAddr().isa == 0) ?
(b64bit ? ocsd_isa_aarch64 : ocsd_isa_arm) : ocsd_isa_thumb2;
m_need_addr = false;
}
}
}
// need to output something - set up an element
if ((err = m_out_elem.addElem(excep_pkt_index)))
return err;
// output a context element if present
if (pCtxtElem)
{
updateContext(pCtxtElem, outElem());
// used the element - need another for later stages
if ((err = m_out_elem.addElem(excep_pkt_index)))
return err;
}
if (!ETE_resetPkt)
{
// if the preferred return address is not the end of the last output range...
if (m_instr_info.instr_addr != excep_ret_addr)
{
bool range_out = false;
instr_range_t addr_range;
// look for match to return address.
err = traceInstrToWP(addr_range, WPRes, true, excep_ret_addr);
if (err != OCSD_OK)
{
if (err == OCSD_ERR_UNSUPPORTED_ISA)
{
m_need_addr = true;
m_need_ctxt = true;
LogError(ocsdError(OCSD_ERR_SEV_WARN, err, excep_pkt_index, m_CSID, "Warning: unsupported instruction set processing exception packet."));
}
else
{
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, excep_pkt_index, m_CSID, "Error processing exception packet."));
}
return err;
}
if (WPFound(WPRes))
{
// waypoint address found - output range
setElemTraceRange(outElem(), addr_range, true, excep_pkt_index);
range_out = true;
}
else
{
// no waypoint - likely inaccessible memory range.
m_need_addr = true; // need an address update
if (addr_range.st_addr != addr_range.en_addr)
{
// some trace before we were out of memory access range
setElemTraceRange(outElem(), addr_range, true, excep_pkt_index);
range_out = true;
}
}
// used the element need another for NACC or EXCEP.
if (range_out)
{
if ((err = m_out_elem.addElem(excep_pkt_index)))
return err;
}
}
// watchpoint walk resulted in inaccessible memory call...
if (WPNacc(WPRes))
{
outElem().setType(OCSD_GEN_TRC_ELEM_ADDR_NACC);
outElem().st_addr = m_instr_info.instr_addr;
// used the element - need another for the final exception packet.
if ((err = m_out_elem.addElem(excep_pkt_index)))
return err;
}
}
// output exception element.
outElem().setType(OCSD_GEN_TRC_ELEM_EXCEPTION);
// add end address as preferred return address to end addr in element
outElem().en_addr = excep_ret_addr;
outElem().excep_ret_addr = 1;
outElem().excep_ret_addr_br_tgt = branch_target;
outElem().exception_number = pExceptElem->getExcepNum();
m_P0_stack.delete_popped(); // clear the used elements from the stack
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::processQElement()
{
ocsd_err_t err = OCSD_OK;
TrcStackQElem *pQElem;
etmv4_addr_val_t QAddr; // address where trace restarts
int iCount = 0;
pQElem = dynamic_cast<TrcStackQElem *>(m_P0_stack.back()); // get the exception element
m_P0_stack.pop_back(); // remove the Q element.
if (!pQElem->hasAddr()) // no address - it must be next on the stack....
{
TrcStackElemAddr *pAddressElem = 0;
TrcStackElemCtxt *pCtxtElem = 0;
TrcStackElem *pElem = 0;
pElem = m_P0_stack.back(); // look at next element.
if (pElem->getP0Type() == P0_CTXT)
{
pCtxtElem = dynamic_cast<TrcStackElemCtxt *>(pElem);
m_P0_stack.pop_back(); // remove the context element
pElem = m_P0_stack.back(); // next one should be an address element
}
if (pElem->getP0Type() != P0_ADDR)
{
// no following address element - indicate processing error.
err = OCSD_ERR_BAD_PACKET_SEQ;
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, pQElem->getRootIndex(), m_CSID, "Address missing in Q packet."));
m_P0_stack.delete_popped();
return err;
}
pAddressElem = dynamic_cast<TrcStackElemAddr *>(pElem);
QAddr = pAddressElem->getAddr();
m_P0_stack.pop_back(); // remove the address element
m_P0_stack.delete_popped(); // clear used elements
// return the context element for processing next time.
if (pCtxtElem)
{
// need a new copy at the back - old one will be deleted as popped.
m_P0_stack.createContextElem(pCtxtElem->getRootPkt(), pCtxtElem->getRootIndex(), pCtxtElem->getContext(),true);
}
}
else
QAddr = pQElem->getAddr();
// process the Q element with address.
iCount = pQElem->getInstrCount();
bool isBranch = false;
// need to output something - set up an element
if ((err = m_out_elem.addElem(pQElem->getRootIndex())))
return err;
instr_range_t addr_range;
addr_range.st_addr = addr_range.en_addr = m_instr_info.instr_addr;
addr_range.num_instr = 0;
// walk iCount instructions
for (int i = 0; i < iCount; i++)
{
uint32_t opcode;
uint32_t bytesReq = 4;
err = accessMemory(m_instr_info.instr_addr, getCurrMemSpace(), &bytesReq, (uint8_t *)&opcode);
if (err != OCSD_OK) break;
if (bytesReq == 4) // got data back
{
m_instr_info.opcode = opcode;
err = instrDecode(&m_instr_info);
if (err != OCSD_OK) break;
// increment address - may be adjusted by direct branch value later
m_instr_info.instr_addr += m_instr_info.instr_size;
addr_range.num_instr++;
isBranch = (m_instr_info.type == OCSD_INSTR_BR) ||
(m_instr_info.type == OCSD_INSTR_BR_INDIRECT);
// on a branch no way of knowing if taken - bail out
if (isBranch)
break;
}
else
break; // missing memory
}
if (err == OCSD_OK)
{
bool inCompleteRange = true;
if (iCount && (addr_range.num_instr == (unsigned)iCount))
{
if ((m_instr_info.instr_addr == QAddr.val) || // complete range
(isBranch)) // or ends on branch - only way we know if branch taken.
{
// output a range and continue
inCompleteRange = false;
// update the range decoded address in the output packet.
addr_range.en_addr = m_instr_info.instr_addr;
setElemTraceRange(outElem(), addr_range, true, pQElem->getRootIndex());
}
}
if (inCompleteRange)
{
// unknown instructions executed.
addr_range.en_addr = QAddr.val;
addr_range.num_instr = iCount;
outElem().setType(OCSD_GEN_TRC_ELEM_I_RANGE_NOPATH);
outElem().setAddrRange(addr_range.st_addr, addr_range.en_addr, addr_range.num_instr);
outElem().setISA(calcISA(m_is_64bit, QAddr.isa));
}
// after the Q element, tracing resumes at the address supplied
SetInstrInfoInAddrISA(QAddr.val, QAddr.isa);
m_need_addr = false;
}
else
{
// output error and halt decode.
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, pQElem->getRootIndex(), m_CSID, "Error processing Q packet"));
}
m_P0_stack.delete_popped();
return err;
}
ocsd_err_t TrcPktDecodeEtmV4I::processSourceAddress()
{
ocsd_err_t err = OCSD_OK;
TrcStackElemAddr *pElem = dynamic_cast<TrcStackElemAddr *>(m_P0_stack.back()); // get the address element
etmv4_addr_val_t srcAddr = pElem->getAddr();
uint32_t opcode, bytesReq = 4;
ocsd_mem_space_acc_t mem_space = m_is_secure ? OCSD_MEM_SPACE_S : OCSD_MEM_SPACE_N;
ocsd_vaddr_t currAddr = m_instr_info.instr_addr; // get the latest decoded address.
instr_range_t out_range;
// check we can read instruction @ source address
err = accessMemory(srcAddr.val, mem_space, &bytesReq, (uint8_t *)&opcode);
if (err != OCSD_OK)
{
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, pElem->getRootIndex(), m_CSID, "Mem access error processing source address packet."));
return err;
}
if (bytesReq != 4)
{
// can't access - no bytes returned - output nacc.
err = m_out_elem.addElemType(pElem->getRootIndex(), OCSD_GEN_TRC_ELEM_ADDR_NACC);
outElem().setAddrStart(srcAddr.val);
return err;
}
// analyze opcode @ source address.
m_instr_info.opcode = opcode;
m_instr_info.instr_addr = srcAddr.val;
err = instrDecode(&m_instr_info);
if (err != OCSD_OK)
{
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, pElem->getRootIndex(), m_CSID, "Instruction decode error processing source address packet."));
return err;
}
m_instr_info.instr_addr += m_instr_info.instr_size;
// initial instruction count for the range.
out_range.num_instr = 1;
// calculate range traced...
if (m_need_addr || (currAddr > srcAddr.val))
{
// we were waiting for a target address, or missing trace
// that indicates how we got to the source address.
m_need_addr = false;
out_range.st_addr = srcAddr.val;
}
else
out_range.st_addr = currAddr;
out_range.en_addr = m_instr_info.instr_addr;
// count instructions
if (out_range.en_addr - out_range.st_addr > m_instr_info.instr_size)
{
if (m_instr_info.isa != ocsd_isa_thumb2)
{
// all 4 byte instructions - just calculate...
out_range.num_instr = (uint32_t)(out_range.en_addr - out_range.st_addr) / 4;
}
else
{
// need to count T32 - 2 or 4 byte instructions
ocsd_instr_info instr; // going back to start of range so make a copy of info.
bool bMemAccErr = false;
instr.instr_addr = out_range.st_addr;
instr.isa = m_instr_info.isa;
instr.pe_type = m_instr_info.pe_type;
instr.dsb_dmb_waypoints = m_instr_info.dsb_dmb_waypoints;
instr.wfi_wfe_branch = m_instr_info.wfi_wfe_branch;
out_range.num_instr = 0;
while ((instr.instr_addr < out_range.en_addr) && !bMemAccErr)
{
bytesReq = 4;
err = accessMemory(instr.instr_addr, mem_space, &bytesReq, (uint8_t *)&opcode);
if (err != OCSD_OK)
{
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, pElem->getRootIndex(), m_CSID, "Mem access error processing source address packet."));
return err;
}
if (bytesReq == 4)
{
err = instrDecode(&instr);
if (err != OCSD_OK)
{
LogError(ocsdError(OCSD_ERR_SEV_ERROR, err, pElem->getRootIndex(), m_CSID, "Instruction decode error processing source address packet."));
return err;
}
instr.instr_addr += instr.instr_size;
out_range.num_instr++;
}
else
{
// something inaccessible between last and current...
bMemAccErr = true;
err = m_out_elem.addElemType(pElem->getRootIndex(), OCSD_GEN_TRC_ELEM_ADDR_NACC);
if (err)
return err;
outElem().setAddrStart(srcAddr.val);
// force range to the one instruction
out_range.num_instr = 1;
out_range.st_addr = srcAddr.val;
out_range.en_addr = m_instr_info.instr_addr; // instr after the decoded instruction @ srcAddr.
}
}
}
}
// got to the source address - output trace range, and instruction as E atom.
switch (m_instr_info.type)
{
case OCSD_INSTR_BR:
if (m_instr_info.is_link)
m_return_stack.push(m_instr_info.instr_addr, m_instr_info.isa);
m_instr_info.instr_addr = m_instr_info.branch_addr;
break;
case OCSD_INSTR_BR_INDIRECT:
m_need_addr = true; // indirect branch taken - need new address.
if (m_instr_info.is_link)
m_return_stack.push(m_instr_info.instr_addr, m_instr_info.isa);
m_return_stack.set_pop_pending(); // need to know next packet before we know what is to happen
break;
}
m_instr_info.isa = m_instr_info.next_isa;
// set the trace range element.
m_out_elem.addElem(pElem->getRootIndex());
setElemTraceRange(outElem(), out_range, true, pElem->getRootIndex());
return err;
}
void TrcPktDecodeEtmV4I::SetInstrInfoInAddrISA(const ocsd_vaddr_t addr_val, const uint8_t isa)
{
m_instr_info.instr_addr = addr_val;
m_instr_info.isa = calcISA(m_is_64bit, isa);
}
// trace an instruction range to a waypoint - and set next address to restart from.
ocsd_err_t TrcPktDecodeEtmV4I::traceInstrToWP(instr_range_t &range, WP_res_t &WPRes, const bool traceToAddrNext /*= false*/, const ocsd_vaddr_t nextAddrMatch /*= 0*/)
{
uint32_t opcode;
uint32_t bytesReq;
ocsd_err_t err = OCSD_OK;
range.st_addr = range.en_addr = m_instr_info.instr_addr;
range.num_instr = 0;
WPRes = WP_NOT_FOUND;
while(WPRes == WP_NOT_FOUND)
{
// start off by reading next opcode;
bytesReq = 4;
err = accessMemory(m_instr_info.instr_addr, getCurrMemSpace(),&bytesReq,(uint8_t *)&opcode);
if(err != OCSD_OK) break;
if(bytesReq == 4) // got data back
{
m_instr_info.opcode = opcode;
err = instrDecode(&m_instr_info);
if(err != OCSD_OK) break;
// increment address - may be adjusted by direct branch value later
m_instr_info.instr_addr += m_instr_info.instr_size;
range.num_instr++;
// either walking to match the next instruction address or a real watchpoint
if (traceToAddrNext)
{
if (m_instr_info.instr_addr == nextAddrMatch)
WPRes = WP_FOUND;
}
else if (m_instr_info.type != OCSD_INSTR_OTHER)
WPRes = WP_FOUND;
}
else
{
// not enough memory accessible.
WPRes = WP_NACC;
}
}
// update the range decoded address in the output packet.
range.en_addr = m_instr_info.instr_addr;
return err;
}
void TrcPktDecodeEtmV4I::updateContext(TrcStackElemCtxt *pCtxtElem, OcsdTraceElement &elem)
{
etmv4_context_t ctxt = pCtxtElem->getContext();
elem.setType(OCSD_GEN_TRC_ELEM_PE_CONTEXT);
// map to output element and local saved state.
m_is_64bit = (ctxt.SF != 0);
elem.context.bits64 = ctxt.SF;
m_is_secure = (ctxt.NS == 0);
elem.context.security_level = ctxt.NS ? ocsd_sec_nonsecure : ocsd_sec_secure;
elem.context.exception_level = (ocsd_ex_level)ctxt.EL;
elem.context.el_valid = 1;
if(ctxt.updated_c)
{
elem.context.ctxt_id_valid = 1;
m_context_id = elem.context.context_id = ctxt.ctxtID;
}
if(ctxt.updated_v)
{
elem.context.vmid_valid = 1;
m_vmid_id = elem.context.vmid = ctxt.VMID;
}
// need to update ISA in case context follows address.
elem.isa = m_instr_info.isa = calcISA(m_is_64bit, pCtxtElem->getIS());
m_need_ctxt = false;
}
ocsd_err_t TrcPktDecodeEtmV4I::handleBadPacket(const char *reason)
{
ocsd_err_t err = OCSD_OK;
if(getComponentOpMode() & OCSD_OPFLG_PKTDEC_ERROR_BAD_PKTS)
{
// error out - stop decoding
err = OCSD_ERR_BAD_DECODE_PKT;
LogError(ocsdError(OCSD_ERR_SEV_ERROR,err,reason));
}
else
{
LogError(ocsdError(OCSD_ERR_SEV_WARN, OCSD_ERR_BAD_DECODE_PKT, reason));
// switch to unsync - clear decode state
resetDecoder();
m_curr_state = NO_SYNC;
m_unsync_eot_info = UNSYNC_BAD_PACKET;
}
return err;
}
inline ocsd_mem_space_acc_t TrcPktDecodeEtmV4I::getCurrMemSpace()
{
static ocsd_mem_space_acc_t SMemSpace[] = {
OCSD_MEM_SPACE_EL1S,
OCSD_MEM_SPACE_EL1S,
OCSD_MEM_SPACE_EL2S,
OCSD_MEM_SPACE_EL3
};
static ocsd_mem_space_acc_t NSMemSpace[] = {
OCSD_MEM_SPACE_EL1N,
OCSD_MEM_SPACE_EL1N,
OCSD_MEM_SPACE_EL2,
OCSD_MEM_SPACE_EL3
};
/* if no valid EL value - just use S/NS */
if (!outElem().context.el_valid)
return m_is_secure ? OCSD_MEM_SPACE_S : OCSD_MEM_SPACE_N;
/* mem space according to EL + S/NS */
int el = (int)(outElem().context.exception_level) & 0x3;
return m_is_secure ? SMemSpace[el] : NSMemSpace[el];
}
/* End of File trc_pkt_decode_etmv4i.cpp */