blob: 668a14b73df05b27781263f0235113a0402c0246 [file] [log] [blame]
/*
* \file trc_pkt_proc_ptm.cpp
* \brief OpenCSD :
*
* \copyright Copyright (c) 2015, ARM Limited. All Rights Reserved.
*/
/*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 'AS IS' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "opencsd/ptm/trc_pkt_proc_ptm.h"
#include "opencsd/ptm/trc_cmp_cfg_ptm.h"
#include "common/ocsd_error.h"
#ifdef __GNUC__
// G++ doesn't like the ## pasting
#define PTM_PKTS_NAME "PKTP_PTM"
#else
// VC++ is OK
#define PTM_PKTS_NAME OCSD_CMPNAME_PREFIX_PKTPROC##"_PTM"
#endif
TrcPktProcPtm::TrcPktProcPtm() : TrcPktProcBase(PTM_PKTS_NAME)
{
InitProcessorState();
BuildIPacketTable();
}
TrcPktProcPtm::TrcPktProcPtm(int instIDNum) : TrcPktProcBase(PTM_PKTS_NAME, instIDNum)
{
InitProcessorState();
BuildIPacketTable();
}
TrcPktProcPtm::~TrcPktProcPtm()
{
}
ocsd_err_t TrcPktProcPtm::onProtocolConfig()
{
ocsd_err_t err = OCSD_ERR_NOT_INIT;
if(m_config != 0)
{
m_chanIDCopy = m_config->getTraceID();
err = OCSD_OK;
}
return err;
}
ocsd_datapath_resp_t TrcPktProcPtm::processData( const ocsd_trc_index_t index,
const uint32_t dataBlockSize,
const uint8_t *pDataBlock,
uint32_t *numBytesProcessed)
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
uint8_t currByte = 0;
m_dataInProcessed = 0;
if(!checkInit())
{
resp = OCSD_RESP_FATAL_NOT_INIT;
}
else
{
m_pDataIn = pDataBlock;
m_dataInLen = dataBlockSize;
m_block_idx = index; // index start for current block
}
while( ( ( m_dataInProcessed < dataBlockSize) ||
(( m_dataInProcessed == dataBlockSize) && (m_process_state == SEND_PKT)) ) &&
OCSD_DATA_RESP_IS_CONT(resp))
{
try
{
switch(m_process_state)
{
case WAIT_SYNC:
if(!m_waitASyncSOPkt)
{
m_curr_pkt_index = m_block_idx + m_dataInProcessed;
m_curr_packet.type = PTM_PKT_NOTSYNC;
m_bAsyncRawOp = hasRawMon();
}
resp = waitASync();
break;
case PROC_HDR:
m_curr_pkt_index = m_block_idx + m_dataInProcessed;
if(readByte(currByte))
{
m_pIPktFn = m_i_table[currByte].pptkFn;
m_curr_packet.type = m_i_table[currByte].pkt_type;
}
else
{
// sequencing error - should not get to the point where readByte
// fails and m_DataInProcessed < dataBlockSize
// throw data overflow error
throw ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_PKT_INTERP_FAIL,m_curr_pkt_index,this->m_chanIDCopy,"Data Buffer Overrun");
}
m_process_state = PROC_DATA;
case PROC_DATA:
(this->*m_pIPktFn)();
break;
case SEND_PKT:
resp = outputPacket();
InitPacketState();
m_process_state = PROC_HDR;
break;
}
}
catch(ocsdError &err)
{
LogError(err);
if( (err.getErrorCode() == OCSD_ERR_BAD_PACKET_SEQ) ||
(err.getErrorCode() == OCSD_ERR_INVALID_PCKT_HDR))
{
// send invalid packets up the pipe to let the next stage decide what to do.
m_process_state = SEND_PKT;
}
else
{
// bail out on any other error.
resp = OCSD_RESP_FATAL_INVALID_DATA;
}
}
catch(...)
{
/// vv bad at this point.
resp = OCSD_RESP_FATAL_SYS_ERR;
const ocsdError &fatal = ocsdError(OCSD_ERR_SEV_ERROR,OCSD_ERR_FAIL,m_curr_pkt_index,m_chanIDCopy,"Unknown System Error decoding trace.");
LogError(fatal);
}
}
*numBytesProcessed = m_dataInProcessed;
return resp;
}
ocsd_datapath_resp_t TrcPktProcPtm::onEOT()
{
ocsd_datapath_resp_t err = OCSD_RESP_FATAL_NOT_INIT;
if(checkInit())
{
err = OCSD_RESP_CONT;
if(m_currPacketData.size() > 0)
{
m_curr_packet.SetErrType(PTM_PKT_INCOMPLETE_EOT);
err = outputPacket();
}
}
return err;
}
ocsd_datapath_resp_t TrcPktProcPtm::onReset()
{
ocsd_datapath_resp_t err = OCSD_RESP_FATAL_NOT_INIT;
if(checkInit())
{
InitProcessorState();
err = OCSD_RESP_CONT;
}
return err;
}
ocsd_datapath_resp_t TrcPktProcPtm::onFlush()
{
ocsd_datapath_resp_t err = OCSD_RESP_FATAL_NOT_INIT;
if(checkInit())
{
err = OCSD_RESP_CONT;
}
return err;
}
const bool TrcPktProcPtm::isBadPacket() const
{
return m_curr_packet.isBadPacket();
}
void TrcPktProcPtm::InitPacketState()
{
m_curr_packet.Clear();
}
void TrcPktProcPtm::InitProcessorState()
{
m_curr_packet.SetType(PTM_PKT_NOTSYNC);
m_pIPktFn = &TrcPktProcPtm::pktReserved;
m_process_state = WAIT_SYNC;
m_async_0 = 0;
m_waitASyncSOPkt = false;
m_bAsyncRawOp = false;
m_bOPNotSyncPkt = false;
m_excepAltISA = 0;
m_curr_packet.ResetState();
InitPacketState();
}
const bool TrcPktProcPtm::readByte(uint8_t &currByte)
{
bool bValidByte = false;
if(m_dataInProcessed < m_dataInLen)
{
currByte = m_pDataIn[m_dataInProcessed++];
m_currPacketData.push_back(currByte);
bValidByte = true;
}
return bValidByte;
}
void TrcPktProcPtm::unReadByte()
{
m_dataInProcessed--;
m_currPacketData.pop_back();
}
ocsd_datapath_resp_t TrcPktProcPtm::outputPacket()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
resp = outputOnAllInterfaces(m_curr_pkt_index,&m_curr_packet,&m_curr_packet.type,m_currPacketData);
m_currPacketData.clear();
return resp;
}
/*** sync and packet functions ***/
ocsd_datapath_resp_t TrcPktProcPtm::waitASync()
{
ocsd_datapath_resp_t resp = OCSD_RESP_CONT;
// looking for possible patterns in input buffer:-
// a) ASYNC @ start : 00 00 00 00 00 80
// b) unsync then async: xx xx xx xx xx xx xx xx 00 00 00 00 00 80
// c) unsync (may have 00) xx xx xx xx 00 xx xx 00 00 00 xx xx xx xx
// d) unsync then part async: xx xx xx xx xx xx xx xx xx xx xx 00 00 00
// e) unsync with prev part async [00 00 00] 00 xx xx xx xx xx xx xx xx [] = byte in previous input buffer
// bytes to read before throwing an unsynced packet
#define UNSYNC_PKT_MAX 16
static const uint8_t spare_zeros[] = { 0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0 };
bool doScan = true;
bool bSendUnsyncedData = false;
bool bHaveASync = false;
int unsynced_bytes = 0;
int unsync_scan_block_start = 0;
int pktBytesOnEntry = m_currPacketData.size(); // did we have part of a potential async last time?
while(doScan && OCSD_DATA_RESP_IS_CONT(resp))
{
// may have spotted the start of an async
if(m_waitASyncSOPkt == true)
{
switch(findAsync())
{
case ASYNC:
case ASYNC_EXTRA_0:
m_process_state = SEND_PKT;
m_waitASyncSOPkt = false;
bSendUnsyncedData = true;
bHaveASync = true;
doScan = false;
break;
case THROW_0:
// remove a bunch of 0s
unsynced_bytes += ASYNC_PAD_0_LIMIT;
m_waitASyncSOPkt = false;
m_currPacketData.erase( m_currPacketData.begin(), m_currPacketData.begin()+ASYNC_PAD_0_LIMIT);
break;
case NOT_ASYNC:
unsynced_bytes += m_currPacketData.size();
m_waitASyncSOPkt = false;
m_currPacketData.clear();
break;
case ASYNC_INCOMPLETE:
bSendUnsyncedData = true;
doScan = false;
break;
}
}
else
{
if(m_pDataIn[m_dataInProcessed++] == 0x00)
{
m_waitASyncSOPkt = true;
m_currPacketData.push_back(0);
m_async_0 = 1;
}
else
{
unsynced_bytes++;
}
}
// may need to send some unsynced data here, either if we have enought to make it worthwhile,
// or are at the end of the buffer.
if(unsynced_bytes >= UNSYNC_PKT_MAX)
bSendUnsyncedData = true;
if(m_dataInProcessed == m_dataInLen)
{
bSendUnsyncedData = true;
doScan = false; // no more data available - stop the scan
}
// will send any unsynced data
if(bSendUnsyncedData && (unsynced_bytes > 0))
{
if(m_bAsyncRawOp)
{
// there were some 0's in the packet buyffer from the last pass that are no longer in the raw buffer,
// and these turned out not to be an async
if(pktBytesOnEntry)
{
outputRawPacketToMonitor(m_curr_pkt_index,&m_curr_packet,pktBytesOnEntry,spare_zeros);
m_curr_pkt_index += pktBytesOnEntry;
}
outputRawPacketToMonitor(m_curr_pkt_index,&m_curr_packet,unsynced_bytes,m_pDataIn+unsync_scan_block_start);
}
if (!m_bOPNotSyncPkt)
{
resp = outputDecodedPacket(m_curr_pkt_index, &m_curr_packet);
m_bOPNotSyncPkt = true;
}
unsync_scan_block_start += unsynced_bytes;
m_curr_pkt_index+= unsynced_bytes;
unsynced_bytes = 0;
bSendUnsyncedData = false;
}
// mark next packet as the ASYNC we are looking for.
if(bHaveASync)
m_curr_packet.SetType(PTM_PKT_A_SYNC);
}
return resp;
}
void TrcPktProcPtm::pktASync()
{
if(m_currPacketData.size() == 1) // header byte
{
m_async_0 = 1;
}
switch(findAsync())
{
case ASYNC:
case ASYNC_EXTRA_0:
m_process_state = SEND_PKT;
break;
case THROW_0:
case NOT_ASYNC:
throwMalformedPacketErr("Bad Async packet");
break;
case ASYNC_INCOMPLETE:
break;
}
}
TrcPktProcPtm::async_result_t TrcPktProcPtm::findAsync()
{
async_result_t async_res = NOT_ASYNC;
bool bFound = false; // found non-zero byte in sequence
bool bByteAvail = true;
uint8_t currByte;
while(!bFound && bByteAvail)
{
if(readByte(currByte))
{
if(currByte == 0x00)
{
m_async_0++;
if(m_async_0 >= (ASYNC_PAD_0_LIMIT + ASYNC_REQ_0))
{
bFound = true;
async_res = THROW_0;
}
}
else
{
if(currByte == 0x80)
{
if(m_async_0 == 5)
async_res = ASYNC;
else if(m_async_0 > 5)
async_res = ASYNC_EXTRA_0;
}
bFound = true;
}
}
else
{
bByteAvail = false;
async_res = ASYNC_INCOMPLETE;
}
}
return async_res;
}
void TrcPktProcPtm::pktISync()
{
uint8_t currByte = 0;
int pktIndex = m_currPacketData.size() - 1;
bool bGotBytes = false, validByte = true;
if(pktIndex == 0)
{
m_numCtxtIDBytes = m_config->CtxtIDBytes();
m_gotCtxtIDBytes = 0;
// total bytes = 6 + ctxtID; (perhaps more later)
m_numPktBytesReq = 6 + m_numCtxtIDBytes;
}
while(validByte && !bGotBytes)
{
if(readByte(currByte))
{
pktIndex = m_currPacketData.size() - 1;
if(pktIndex == 5)
{
// got the info byte
int altISA = (currByte >> 2) & 0x1;
int reason = (currByte >> 5) & 0x3;
m_curr_packet.SetISyncReason((ocsd_iSync_reason)(reason));
m_curr_packet.UpdateNS((currByte >> 3) & 0x1);
m_curr_packet.UpdateAltISA((currByte >> 2) & 0x1);
m_curr_packet.UpdateHyp((currByte >> 1) & 0x1);
ocsd_isa isa = ocsd_isa_arm;
if(m_currPacketData[1] & 0x1)
isa = altISA ? ocsd_isa_tee : ocsd_isa_thumb2;
m_curr_packet.UpdateISA(isa);
// check cycle count required - not if reason == 0;
m_needCycleCount = (reason != 0) ? m_config->enaCycleAcc() : false;
m_gotCycleCount = false;
m_numPktBytesReq += (m_needCycleCount ? 1 : 0);
m_gotCCBytes = 0;
}
else if(pktIndex > 5)
{
// cycle count appears first if present
if(m_needCycleCount && !m_gotCycleCount)
{
if(pktIndex == 6)
m_gotCycleCount = (bool)((currByte & 0x40) == 0); // no cont bit, got cycle count
else
m_gotCycleCount = ((currByte & 0x80) == 0) || (pktIndex == 10);
m_gotCCBytes++; // count the cycle count bytes for later use.
if(!m_gotCycleCount) // need more cycle count bytes
m_numPktBytesReq++;
}
// then context ID if present.
else if( m_numCtxtIDBytes > m_gotCtxtIDBytes)
{
m_gotCtxtIDBytes++;
}
}
// check if we have enough bytes
bGotBytes = (bool)((unsigned)m_numPktBytesReq == m_currPacketData.size());
}
else
validByte = false; // no byte available, exit.
}
if(bGotBytes)
{
// extract address value, cycle count and ctxt id.
uint32_t cycleCount = 0;
uint32_t ctxtID = 0;
int optIdx = 6; // start index for optional elements.
// address is always full fixed 32 bit value
uint32_t address = ((uint32_t)m_currPacketData[1]) & 0xFE;
address |= ((uint32_t)m_currPacketData[2]) << 8;
address |= ((uint32_t)m_currPacketData[3]) << 16;
address |= ((uint32_t)m_currPacketData[4]) << 24;
m_curr_packet.UpdateAddress(address,32);
if(m_needCycleCount)
{
extractCycleCount(optIdx,cycleCount);
m_curr_packet.SetCycleCount(cycleCount);
optIdx+=m_gotCCBytes;
}
if(m_numCtxtIDBytes)
{
extractCtxtID(optIdx,ctxtID);
m_curr_packet.UpdateContextID(ctxtID);
}
m_process_state = SEND_PKT;
}
}
void TrcPktProcPtm::pktTrigger()
{
m_process_state = SEND_PKT; // no payload
}
void TrcPktProcPtm::pktWPointUpdate()
{
bool bDone = false;
bool bBytesAvail = true;
uint8_t currByte = 0;
int byteIdx = 0;
if(m_currPacketData.size() == 1)
{
m_gotAddrBytes = false; // flag to indicate got all needed address bytes
m_numAddrBytes = 0; // number of address bytes so far - in this case header is not part of the address
m_gotExcepBytes = false; // mark as not got all required exception bytes thus far
m_numExcepBytes = 0; // 0 read in
m_addrPktIsa = ocsd_isa_unknown; // not set by this packet as yet
}
// collect all the bytes needed
while(!bDone && bBytesAvail)
{
if(readByte(currByte))
{
byteIdx = m_currPacketData.size() - 1;
if(!m_gotAddrBytes)
{
// byteIdx for address byte will run from 1 to 5 - first 4 my have continuation or not.
if(byteIdx <= 4)
{
// address bytes 1 - 4;
// ISA stays the same
if((currByte & 0x80) == 0x00)
{
// no further bytes
m_gotAddrBytes = true;
bDone = true;
m_gotExcepBytes = true;
}
}
else
{
// 5th address byte - determine ISA from this.
if((currByte & 0x40) == 0x00)
m_gotExcepBytes = true; // no exception bytes - mark as done
m_gotAddrBytes = true;
bDone = m_gotExcepBytes;
m_addrPktIsa = ocsd_isa_arm; // assume ARM, but then check
if((currByte & 0x20) == 0x20) // bit 5 == 1'b1 - jazelle, bits 4 & 3 part of address.
m_addrPktIsa = ocsd_isa_jazelle;
else if((currByte & 0x30) == 0x10) // bit [5:4] == 2'b01 - thumb, bit 3 part of address.
m_addrPktIsa = ocsd_isa_thumb2;
}
m_numAddrBytes++;
}
else if(!m_gotExcepBytes)
{
// excep byte is actually a WP update byte.
m_excepAltISA = ((currByte & 0x40) == 0x40) ? 1 : 0;
m_gotExcepBytes = true;
m_numExcepBytes++;
bDone = true;
}
}
else
bBytesAvail = false;
}
// analyse the bytes to create the packet
if(bDone)
{
// ISA for the packet
if(m_addrPktIsa == ocsd_isa_unknown) // unchanged by trace packet
m_addrPktIsa = m_curr_packet.getISA(); // same as prev
if(m_gotExcepBytes) // may adjust according to alt ISA in exception packet
{
if((m_addrPktIsa == ocsd_isa_tee) && (m_excepAltISA == 0))
m_addrPktIsa = ocsd_isa_thumb2;
else if((m_addrPktIsa == ocsd_isa_thumb2) && (m_excepAltISA == 1))
m_addrPktIsa = ocsd_isa_tee;
}
m_curr_packet.UpdateISA(m_addrPktIsa); // mark ISA in packet (update changes current and prev to dectect an ISA change).
uint8_t total_bits = 0;
uint32_t addr_val = extractAddress(1,total_bits);
m_curr_packet.UpdateAddress(addr_val,total_bits);
m_process_state = SEND_PKT;
}
}
void TrcPktProcPtm::pktIgnore()
{
m_process_state = SEND_PKT; // no payload
}
void TrcPktProcPtm::pktCtxtID()
{
int pktIndex = m_currPacketData.size() - 1;
// if at the header, determine how many more bytes we need.
if(pktIndex == 0)
{
m_numCtxtIDBytes = m_config->CtxtIDBytes();
m_gotCtxtIDBytes = 0;
}
// read the necessary ctxtID bytes from the stream
bool bGotBytes = false, bytesAvail = true;
uint32_t ctxtID = 0;
bGotBytes = m_numCtxtIDBytes == m_gotCtxtIDBytes;
while(!bGotBytes & bytesAvail)
{
bytesAvail = readByte();
if(bytesAvail)
m_gotCtxtIDBytes++;
bGotBytes = m_numCtxtIDBytes == m_gotCtxtIDBytes;
}
if(bGotBytes)
{
if(m_numCtxtIDBytes)
{
extractCtxtID(1,ctxtID);
}
m_curr_packet.UpdateContextID(ctxtID);
m_process_state = SEND_PKT;
}
}
void TrcPktProcPtm::pktVMID()
{
uint8_t currByte;
// just need a single payload byte...
if(readByte(currByte))
{
m_curr_packet.UpdateVMID(currByte);
m_process_state = SEND_PKT;
}
}
void TrcPktProcPtm::pktAtom()
{
uint8_t pHdr = m_currPacketData[0];
if(!m_config->enaCycleAcc())
{
m_curr_packet.SetAtomFromPHdr(pHdr);
m_process_state = SEND_PKT;
}
else
{
bool bGotAllPktBytes = false, byteAvail = true;
uint8_t currByte = 0; // cycle accurate tracing -> atom + cycle count
if(!(pHdr & 0x40))
{
// only the header byte present
bGotAllPktBytes = true;
}
else
{
// up to 4 additional bytes of count data.
while(byteAvail && !bGotAllPktBytes)
{
if(readByte(currByte))
{
if(!(currByte & 0x80) || (m_currPacketData.size() == 5))
bGotAllPktBytes = true;
}
else
byteAvail = false;
}
}
// we have all the bytes for a cycle accurate packet.
if(bGotAllPktBytes)
{
uint32_t cycleCount = 0;
extractCycleCount(0,cycleCount);
m_curr_packet.SetCycleCount(cycleCount);
m_curr_packet.SetCycleAccAtomFromPHdr(pHdr);
m_process_state = SEND_PKT;
}
}
}
void TrcPktProcPtm::pktTimeStamp()
{
uint8_t currByte = 0;
int pktIndex = m_currPacketData.size() - 1;
bool bGotBytes = false, byteAvail = true;
if(pktIndex == 0)
{
m_gotTSBytes = false;
m_needCycleCount = m_config->enaCycleAcc();
m_gotCCBytes = 0;
// max byte buffer size for full ts packet
m_tsByteMax = m_config->TSPkt64() ? 10 : 8;
}
while(byteAvail && !bGotBytes)
{
if(readByte(currByte))
{
if(!m_gotTSBytes)
{
if(((currByte & 0x80) == 0) || (m_currPacketData.size() == (unsigned)m_tsByteMax))
{
m_gotTSBytes = true;
if(!m_needCycleCount)
bGotBytes = true;
}
}
else
{
uint8_t cc_cont_mask = 0x80;
// got TS bytes, collect cycle count
if(m_gotCCBytes == 0)
cc_cont_mask = 0x40;
if((currByte & cc_cont_mask) == 0)
bGotBytes = true;
m_gotCCBytes++;
if(m_gotCCBytes == 5)
bGotBytes = true;
}
}
else
byteAvail = false;
}
if(bGotBytes)
{
uint64_t tsVal = 0;
uint32_t cycleCount = 0;
uint8_t tsUpdateBits = 0;
int ts_end_idx = extractTS(tsVal,tsUpdateBits);
if(m_needCycleCount)
{
extractCycleCount(ts_end_idx,cycleCount);
m_curr_packet.SetCycleCount(cycleCount);
}
m_curr_packet.UpdateTimestamp(tsVal,tsUpdateBits);
m_process_state = SEND_PKT;
}
}
void TrcPktProcPtm::pktExceptionRet()
{
m_process_state = SEND_PKT; // no payload
}
void TrcPktProcPtm::pktBranchAddr()
{
uint8_t currByte = m_currPacketData[0];
bool bDone = false;
bool bBytesAvail = true;
int byteIdx = 0;
if(m_currPacketData.size() == 1)
{
m_gotAddrBytes = false; // flag to indicate got all needed address bytes
m_numAddrBytes = 1; // number of address bytes so far
m_needCycleCount = m_config->enaCycleAcc(); // check if we have a cycle count
m_gotCCBytes = 0; // number of cc bytes read in so far.
m_gotExcepBytes = false; // mark as not got all required exception bytes thus far
m_numExcepBytes = 0; // 0 read in
m_addrPktIsa = ocsd_isa_unknown; // not set by this packet as yet
// header is also 1st address byte
if((currByte & 0x80) == 0) // could be single byte packet
{
m_gotAddrBytes = true;
if(!m_needCycleCount)
bDone = true; // all done if no cycle count
m_gotExcepBytes = true; // cannot have exception bytes following single byte packet
}
}
// collect all the bytes needed
while(!bDone && bBytesAvail)
{
if(readByte(currByte))
{
byteIdx = m_currPacketData.size() - 1;
if(!m_gotAddrBytes)
{
if(byteIdx < 4)
{
// address bytes 2 - 4;
// ISA stays the same
if((currByte & 0x80) == 0x00)
{
// no further bytes
if((currByte & 0x40) == 0x00)
m_gotExcepBytes = true; // no exception bytes - mark as done
m_gotAddrBytes = true;
bDone = m_gotExcepBytes && !m_needCycleCount;
}
}
else
{
// 5th address byte - determine ISA from this.
if((currByte & 0x40) == 0x00)
m_gotExcepBytes = true; // no exception bytes - mark as done
m_gotAddrBytes = true;
bDone = m_gotExcepBytes && !m_needCycleCount;
m_addrPktIsa = ocsd_isa_arm; // assume ARM, but then check
if((currByte & 0x20) == 0x20) // bit 5 == 1'b1 - jazelle, bits 4 & 3 part of address.
m_addrPktIsa = ocsd_isa_jazelle;
else if((currByte & 0x30) == 0x10) // bit [5:4] == 2'b01 - thumb, bit 3 part of address.
m_addrPktIsa = ocsd_isa_thumb2;
}
m_numAddrBytes++;
}
else if(!m_gotExcepBytes)
{
// may need exception bytes
if(m_numExcepBytes == 0)
{
if((currByte & 0x80) == 0x00)
m_gotExcepBytes = true;
m_excepAltISA = ((currByte & 0x40) == 0x40) ? 1 : 0;
}
else
m_gotExcepBytes = true;
m_numExcepBytes++;
if(m_gotExcepBytes && !m_needCycleCount)
bDone = true;
}
else if(m_needCycleCount)
{
// not done after exception bytes, collect cycle count
if(m_gotCCBytes == 0)
{
bDone = ((currByte & 0x40) == 0x00 );
}
else
{
// done if no more or 5th byte
bDone = (((currByte & 0x80) == 0x00 ) || (m_gotCCBytes == 4));
}
m_gotCCBytes++;
}
else
// this should never be reached.
throwMalformedPacketErr("sequencing error analysing branch packet");
}
else
bBytesAvail = false;
}
// analyse the bytes to create the packet
if(bDone)
{
// ISA for the packet
if(m_addrPktIsa == ocsd_isa_unknown) // unchanged by trace packet
m_addrPktIsa = m_curr_packet.getISA(); // same as prev
if(m_gotExcepBytes) // may adjust according to alt ISA in exception packet
{
if((m_addrPktIsa == ocsd_isa_tee) && (m_excepAltISA == 0))
m_addrPktIsa = ocsd_isa_thumb2;
else if((m_addrPktIsa == ocsd_isa_thumb2) && (m_excepAltISA == 1))
m_addrPktIsa = ocsd_isa_tee;
}
m_curr_packet.UpdateISA(m_addrPktIsa); // mark ISA in packet (update changes current and prev to dectect an ISA change).
// we know the ISA, we can correctly interpret the address.
uint8_t total_bits = 0;
uint32_t addr_val = extractAddress(0,total_bits);
m_curr_packet.UpdateAddress(addr_val,total_bits);
if(m_numExcepBytes > 0)
{
uint8_t E1 = m_currPacketData[m_numAddrBytes];
uint16_t ENum = (E1 >> 1) & 0xF;
ocsd_armv7_exception excep = Excp_Reserved;
m_curr_packet.UpdateNS(E1 & 0x1);
if(m_numExcepBytes > 1)
{
uint8_t E2 = m_currPacketData[m_numAddrBytes+1];
m_curr_packet.UpdateHyp((E2 >> 5) & 0x1);
ENum |= ((uint16_t)(E2 & 0x1F) << 4);
}
if(ENum <= 0xF)
{
static ocsd_armv7_exception v7ARExceptions[16] = {
Excp_NoException, Excp_DebugHalt, Excp_SMC, Excp_Hyp,
Excp_AsyncDAbort, Excp_ThumbEECheckFail, Excp_Reserved, Excp_Reserved,
Excp_Reset, Excp_Undef, Excp_SVC, Excp_PrefAbort,
Excp_SyncDataAbort, Excp_Generic, Excp_IRQ, Excp_FIQ
};
excep = v7ARExceptions[ENum];
}
m_curr_packet.SetException(excep,ENum);
}
if(m_needCycleCount)
{
int countIdx = m_numAddrBytes + m_numExcepBytes;
uint32_t cycleCount = 0;
extractCycleCount(countIdx,cycleCount);
m_curr_packet.SetCycleCount(cycleCount);
}
m_process_state = SEND_PKT;
}
}
void TrcPktProcPtm::pktReserved()
{
m_process_state = SEND_PKT; // no payload
}
void TrcPktProcPtm::extractCtxtID(int idx, uint32_t &ctxtID)
{
ctxtID = 0;
int shift = 0;
for(int i=0; i < m_numCtxtIDBytes; i++)
{
if((size_t)idx+i >= m_currPacketData.size())
throwMalformedPacketErr("Insufficient packet bytes for Context ID value.");
ctxtID |= ((uint32_t)m_currPacketData[idx+i]) << shift;
shift+=8;
}
}
void TrcPktProcPtm::extractCycleCount(int offset, uint32_t &cycleCount)
{
bool bCont = true;
cycleCount = 0;
int by_idx = 0;
uint8_t currByte;
int shift = 4;
while(bCont)
{
if((size_t)by_idx+offset >= m_currPacketData.size())
throwMalformedPacketErr("Insufficient packet bytes for Cycle Count value.");
currByte = m_currPacketData[offset+by_idx];
if(by_idx == 0)
{
bCont = (currByte & 0x40) != 0;
cycleCount = (currByte >> 2) & 0xF;
}
else
{
bCont = (currByte & 0x80) != 0;
if(by_idx == 4)
bCont = false;
cycleCount |= (((uint32_t)(currByte & 0x7F)) << shift);
shift += 7;
}
by_idx++;
}
}
int TrcPktProcPtm::extractTS(uint64_t &tsVal,uint8_t &tsUpdateBits)
{
bool bCont = true;
int tsIdx = 1; // start index;
uint8_t byteVal;
bool b64BitVal = m_config->TSPkt64();
int shift = 0;
tsVal = 0;
tsUpdateBits = 0;
while(bCont)
{
if((size_t)tsIdx >= m_currPacketData.size())
throwMalformedPacketErr("Insufficient packet bytes for Timestamp value.");
byteVal = m_currPacketData[tsIdx];
if(b64BitVal)
{
if(tsIdx < 9)
{
bCont = ((byteVal & 0x80) == 0x80);
byteVal &= 0x7F;
tsUpdateBits += 7;
}
else
{
bCont = false;
tsUpdateBits += 8;
}
}
else
{
if(tsIdx < 7)
{
bCont = ((byteVal & 0x80) == 0x80);
byteVal &= 0x7F;
tsUpdateBits += 7;
}
else
{
byteVal &=0x3F;
bCont = false;
tsUpdateBits += 6;
}
}
tsVal |= (((uint64_t)byteVal) << shift);
tsIdx++;
shift += 7;
}
return tsIdx; // return next byte index in packet.
}
uint32_t TrcPktProcPtm::extractAddress(const int offset, uint8_t &total_bits)
{
// we know the ISA, we can correctly interpret the address.
uint32_t addr_val = 0;
uint8_t mask = 0x7E; // first byte mask (always);
uint8_t num_bits = 0x7; // number of bits in the 1st byte (thumb);
int shift = 0;
int next_shift = 0;
total_bits = 0;
for(int i = 0; i < m_numAddrBytes; i++)
{
if(i == 4)
{
// 5th byte mask
mask = 0x0f; // thumb mask;
num_bits = 4;
if(m_addrPktIsa == ocsd_isa_jazelle)
{
mask = 0x1F;
num_bits = 5;
}
else if(m_addrPktIsa == ocsd_isa_arm)
{
mask = 0x07;
num_bits = 3;
}
}
else if(i > 0)
{
mask = 0x7F;
num_bits = 7;
// check for last byte but not 1st or 5th byte mask
if(i == m_numAddrBytes-1)
{
mask = 0x3F;
num_bits = 6;
}
}
// extract data
shift = next_shift;
addr_val |= ((uint32_t)(m_currPacketData[i+offset] & mask) << shift);
total_bits += num_bits;
// how much we shift the next value
if(i == 0)
{
if(m_addrPktIsa == ocsd_isa_jazelle)
{
addr_val >>= 1;
next_shift = 6;
total_bits--; // adjust bits for jazelle offset
}
else
{
next_shift = 7;
}
}
else
{
next_shift += 7;
}
}
if(m_addrPktIsa == ocsd_isa_arm)
{
addr_val <<= 1; // shift one extra bit for ARM address alignment.
total_bits++;
}
return addr_val;
}
void TrcPktProcPtm::BuildIPacketTable()
{
// initialise all to branch, atom or reserved packet header
for(unsigned i = 0; i < 256; i++)
{
// branch address packets all end in 8'bxxxxxxx1
if((i & 0x01) == 0x01)
{
m_i_table[i].pkt_type = PTM_PKT_BRANCH_ADDRESS;
m_i_table[i].pptkFn = &TrcPktProcPtm::pktBranchAddr;
}
// atom packets are 8'b1xxxxxx0
else if((i & 0x81) == 0x80)
{
m_i_table[i].pkt_type = PTM_PKT_ATOM;
m_i_table[i].pptkFn = &TrcPktProcPtm::pktAtom;
}
else
{
// set all the others to reserved for now
m_i_table[i].pkt_type = PTM_PKT_RESERVED;
m_i_table[i].pptkFn = &TrcPktProcPtm::pktReserved;
}
}
// pick out the other packet types by individual codes.
// A-sync 8'b00000000
m_i_table[0x00].pkt_type = PTM_PKT_A_SYNC;
m_i_table[0x00].pptkFn = &TrcPktProcPtm::pktASync;
// I-sync 8'b00001000
m_i_table[0x08].pkt_type = PTM_PKT_I_SYNC;
m_i_table[0x08].pptkFn = &TrcPktProcPtm::pktISync;
// waypoint update 8'b01110010
m_i_table[0x72].pkt_type = PTM_PKT_WPOINT_UPDATE;
m_i_table[0x72].pptkFn = &TrcPktProcPtm::pktWPointUpdate;
// trigger 8'b00001100
m_i_table[0x0C].pkt_type = PTM_PKT_TRIGGER;
m_i_table[0x0C].pptkFn = &TrcPktProcPtm::pktTrigger;
// context ID 8'b01101110
m_i_table[0x6E].pkt_type = PTM_PKT_CONTEXT_ID;
m_i_table[0x6E].pptkFn = &TrcPktProcPtm::pktCtxtID;
// VMID 8'b00111100
m_i_table[0x3C].pkt_type = PTM_PKT_VMID;
m_i_table[0x3C].pptkFn = &TrcPktProcPtm::pktVMID;
// Timestamp 8'b01000x10
m_i_table[0x42].pkt_type = PTM_PKT_TIMESTAMP;
m_i_table[0x42].pptkFn = &TrcPktProcPtm::pktTimeStamp;
m_i_table[0x46].pkt_type = PTM_PKT_TIMESTAMP;
m_i_table[0x46].pptkFn = &TrcPktProcPtm::pktTimeStamp;
// Exception return 8'b01110110
m_i_table[0x76].pkt_type = PTM_PKT_EXCEPTION_RET;
m_i_table[0x76].pptkFn = &TrcPktProcPtm::pktExceptionRet;
// Ignore 8'b01100110
m_i_table[0x66].pkt_type = PTM_PKT_IGNORE;
m_i_table[0x66].pptkFn = &TrcPktProcPtm::pktIgnore;
}
/* End of File trc_pkt_proc_ptm.cpp */