blob: 85b8a7a3fc48a3cd5ec8f56b3c737c450b9db2cd [file] [log] [blame]
//
// Copyright (c) 2017 The Khronos Group Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "../testBase.h"
#define MAX_ERR 0.005f
#define MAX_HALF_LINEAR_ERR 0.3f
extern bool gDebugTrace, gTestSmallImages, gTestMaxImages, gDeviceLt20;
struct image_kernel_data
{
cl_int width;
cl_int height;
cl_int arraySize;
cl_int channelType;
cl_int channelOrder;
cl_int expectedChannelType;
cl_int expectedChannelOrder;
};
static const char *methodTestKernelPattern =
"typedef struct {\n"
" int width;\n"
" int height;\n"
" int arraySize;\n"
" int channelType;\n"
" int channelOrder;\n"
" int expectedChannelType;\n"
" int expectedChannelOrder;\n"
" } image_kernel_data;\n"
"__kernel void sample_kernel( read_only %s input, __global image_kernel_data *outData )\n"
"{\n"
" outData->width = get_image_width( input );\n"
" outData->height = get_image_height( input );\n"
" outData->arraySize = get_image_array_size( input );\n"
" outData->channelType = get_image_channel_data_type( input );\n"
" outData->channelOrder = get_image_channel_order( input );\n"
"\n"
" outData->expectedChannelType = %s;\n"
" outData->expectedChannelOrder = %s;\n"
"}";
int test_get_2Dimage_array_info_single( cl_context context, cl_command_queue queue, image_descriptor *imageInfo, MTdata d )
{
int error = 0;
clProgramWrapper program;
clKernelWrapper kernel;
clMemWrapper image, outDataBuffer;
char programSrc[ 10240 ];
image_kernel_data outKernelData;
// Generate some data to test against
BufferOwningPtr<char> imageValues;
generate_random_image_data( imageInfo, imageValues, d );
// Construct testing source
if( gDebugTrace )
log_info( " - Creating 2D image array %d by %d by %d...\n", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->arraySize );
image = create_image_2d_array( context, (cl_mem_flags)(CL_MEM_READ_ONLY), imageInfo->format, imageInfo->width, imageInfo->height, imageInfo->arraySize, 0, 0, NULL, &error );
if( image == NULL )
{
log_error( "ERROR: Unable to create 2D image array of size %d x %d x %d (%s)", (int)imageInfo->width, (int)imageInfo->height, (int)imageInfo->arraySize, IGetErrorString( error ) );
return -1;
}
char channelTypeConstantString[256] = {0};
char channelOrderConstantString[256] = {0};
const char* channelTypeName = GetChannelTypeName( imageInfo->format->image_channel_data_type );
const char* channelOrderName = GetChannelOrderName( imageInfo->format->image_channel_order );
if(channelTypeName && strlen(channelTypeName))
sprintf(channelTypeConstantString, "CLK_%s", &channelTypeName[3]); // replace CL_* with CLK_*
if(channelOrderName && strlen(channelOrderName))
sprintf(channelOrderConstantString, "CLK_%s", &channelOrderName[3]); // replace CL_* with CLK_*
// Create a program to run against
sprintf( programSrc, methodTestKernelPattern,
(imageInfo->format->image_channel_order == CL_DEPTH) ? "image2d_array_depth_t" : "image2d_array_t" ,
channelTypeConstantString, channelOrderConstantString);
//log_info("-----------------------------------\n%s\n", programSrc);
error = clFinish(queue);
if (error)
print_error(error, "clFinish failed.\n");
const char *ptr = programSrc;
error = create_single_kernel_helper_with_build_options( context, &program, &kernel, 1, &ptr, "sample_kernel", gDeviceLt20 ? "" : "-cl-std=CL2.0" );
test_error( error, "Unable to create kernel to test against" );
// Create an output buffer
outDataBuffer = clCreateBuffer( context, (cl_mem_flags)(CL_MEM_READ_WRITE), sizeof( outKernelData ), NULL, &error );
test_error( error, "Unable to create output buffer" );
// Set up arguments and run
error = clSetKernelArg( kernel, 0, sizeof( image ), &image );
test_error( error, "Unable to set kernel argument" );
error = clSetKernelArg( kernel, 1, sizeof( outDataBuffer ), &outDataBuffer );
test_error( error, "Unable to set kernel argument" );
size_t threads[1] = { 1 }, localThreads[1] = { 1 };
error = clEnqueueNDRangeKernel( queue, kernel, 1, NULL, threads, localThreads, 0, NULL, NULL );
test_error( error, "Unable to run kernel" );
error = clEnqueueReadBuffer( queue, outDataBuffer, CL_TRUE, 0, sizeof( outKernelData ), &outKernelData, 0, NULL, NULL );
test_error( error, "Unable to read data buffer" );
// Verify the results now
if( outKernelData.width != (cl_int)imageInfo->width )
{
log_error( "ERROR: Returned width did not validate (expected %d, got %d)\n", (int)imageInfo->width, (int)outKernelData.width );
error = -1;
}
if( outKernelData.height != (cl_int)imageInfo->height )
{
log_error( "ERROR: Returned height did not validate (expected %d, got %d)\n", (int)imageInfo->height, (int)outKernelData.height );
error = -1;
}
if( outKernelData.arraySize != (cl_int)imageInfo->arraySize )
{
log_error( "ERROR: Returned array size did not validate (expected %d, got %d)\n", (int)imageInfo->arraySize, (int)outKernelData.arraySize );
error = -1;
}
if( outKernelData.channelType != (cl_int)outKernelData.expectedChannelType )
{
log_error( "ERROR: Returned channel type did not validate (expected %s (%d), got %d)\n", GetChannelTypeName( imageInfo->format->image_channel_data_type ),
(int)outKernelData.expectedChannelType, (int)outKernelData.channelType );
error = -1;
}
if( outKernelData.channelOrder != (cl_int)outKernelData.expectedChannelOrder )
{
log_error( "ERROR: Returned channel order did not validate (expected %s (%d), got %d)\n", GetChannelOrderName( imageInfo->format->image_channel_order ),
(int)outKernelData.expectedChannelOrder, (int)outKernelData.channelOrder );
error = -1;
}
if( clFinish(queue) != CL_SUCCESS )
{
log_error( "ERROR: CL Finished failed in %s \n", __FUNCTION__);
error = -1;
}
return error;
}
int test_get_image_info_2D_array( cl_device_id device, cl_context context, cl_command_queue queue, cl_image_format *format )
{
size_t maxWidth, maxHeight, maxArraySize;
cl_ulong maxAllocSize, memSize;
image_descriptor imageInfo = { 0 };
RandomSeed seed( gRandomSeed );
size_t pixelSize;
imageInfo.type = CL_MEM_OBJECT_IMAGE2D_ARRAY;
imageInfo.format = format;
pixelSize = get_pixel_size( imageInfo.format );
int error = clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_WIDTH, sizeof( maxWidth ), &maxWidth, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE3D_MAX_HEIGHT, sizeof( maxHeight ), &maxHeight, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_IMAGE_MAX_ARRAY_SIZE, sizeof( maxArraySize ), &maxArraySize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof( maxAllocSize ), &maxAllocSize, NULL );
error |= clGetDeviceInfo( device, CL_DEVICE_GLOBAL_MEM_SIZE, sizeof( memSize ), &memSize, NULL );
test_error( error, "Unable to get max image 3D size from device" );
if (memSize > (cl_ulong)SIZE_MAX) {
memSize = (cl_ulong)SIZE_MAX;
}
if( gTestSmallImages )
{
for( imageInfo.width = 1; imageInfo.width < 13; imageInfo.width++ )
{
imageInfo.rowPitch = imageInfo.width * pixelSize;
for( imageInfo.height = 1; imageInfo.height < 9; imageInfo.height++ )
{
imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height;
for( imageInfo.arraySize = 2; imageInfo.arraySize < 9; imageInfo.arraySize++ )
{
if( gDebugTrace )
log_info( " at size %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize );
int ret = test_get_2Dimage_array_info_single( context, queue, &imageInfo, seed );
if( ret )
return -1;
}
}
}
}
else if( gTestMaxImages )
{
// Try a specific set of maximum sizes
size_t numbeOfSizes;
size_t sizes[100][3];
get_max_sizes(&numbeOfSizes, 100, sizes, maxWidth, maxHeight, 1, maxArraySize, maxAllocSize, memSize, CL_MEM_OBJECT_IMAGE2D_ARRAY, imageInfo.format);
for( size_t idx = 0; idx < numbeOfSizes; idx++ )
{
imageInfo.width = sizes[ idx ][ 0 ];
imageInfo.height = sizes[ idx ][ 1 ];
imageInfo.arraySize = sizes[ idx ][ 2 ];
imageInfo.rowPitch = imageInfo.width * pixelSize;
imageInfo.slicePitch = imageInfo.height * imageInfo.rowPitch;
log_info( "Testing %d x %d x %d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ], (int)sizes[ idx ][ 2 ] );
if( gDebugTrace )
log_info( " at max size %d,%d,%d\n", (int)sizes[ idx ][ 0 ], (int)sizes[ idx ][ 1 ], (int)sizes[ idx ][ 2 ] );
if( test_get_2Dimage_array_info_single( context, queue, &imageInfo, seed ) )
return -1;
}
}
else
{
for( int i = 0; i < NUM_IMAGE_ITERATIONS; i++ )
{
cl_ulong size;
// Loop until we get a size that a) will fit in the max alloc size and b) that an allocation of that
// image, the result array, plus offset arrays, will fit in the global ram space
do
{
imageInfo.width = (size_t)random_log_in_range( 16, (int)maxWidth / 32, seed );
imageInfo.height = (size_t)random_log_in_range( 16, (int)maxHeight / 32, seed );
imageInfo.arraySize = (size_t)random_log_in_range( 16, (int)maxArraySize / 32, seed );
imageInfo.rowPitch = imageInfo.width * pixelSize;
imageInfo.slicePitch = imageInfo.rowPitch * imageInfo.height;
size_t extraWidth = (int)random_log_in_range( 0, 64, seed );
imageInfo.rowPitch += extraWidth;
do {
extraWidth++;
imageInfo.rowPitch += extraWidth;
} while ((imageInfo.rowPitch % pixelSize) != 0);
size_t extraHeight = (int)random_log_in_range( 0, 8, seed );
imageInfo.slicePitch = imageInfo.rowPitch * (imageInfo.height + extraHeight);
size = (cl_ulong)imageInfo.slicePitch * (cl_ulong)imageInfo.arraySize * 4 * 4;
} while( size > maxAllocSize || ( size * 3 ) > memSize );
if( gDebugTrace )
log_info( " at size %d,%d,%d (pitch %d,%d) out of %d,%d,%d\n", (int)imageInfo.width, (int)imageInfo.height, (int)imageInfo.arraySize, (int)imageInfo.rowPitch, (int)imageInfo.slicePitch, (int)maxWidth, (int)maxHeight, (int)maxArraySize );
int ret = test_get_2Dimage_array_info_single( context, queue, &imageInfo, seed );
if( ret )
return -1;
}
}
return 0;
}