blob: 325cc0042ea75ce1e3c886c14f83bc870ec14ad6 [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_VALIDATION_HELPERS_H
#define ARM_COMPUTE_TEST_VALIDATION_HELPERS_H
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "support/Half.h"
#include "tests/Globals.h"
#include "tests/SimpleTensor.h"
#include <random>
#include <type_traits>
#include <utility>
namespace arm_compute
{
namespace test
{
namespace validation
{
template <typename T>
struct is_floating_point : public std::is_floating_point<T>
{
};
template <>
struct is_floating_point<half> : public std::true_type
{
};
/** Helper function to get the testing range for each activation layer.
*
* @param[in] activation Activation function to test.
* @param[in] data_type Data type.
*
* @return A pair containing the lower upper testing bounds for a given function.
*/
template <typename T>
std::pair<T, T> get_activation_layer_test_bounds(ActivationLayerInfo::ActivationFunction activation, DataType data_type)
{
std::pair<T, T> bounds;
switch(data_type)
{
case DataType::F16:
{
using namespace half_float::literal;
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::TANH:
case ActivationLayerInfo::ActivationFunction::SQUARE:
case ActivationLayerInfo::ActivationFunction::LOGISTIC:
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
// Reduce range as exponent overflows
bounds = std::make_pair(-2._h, 2._h);
break;
case ActivationLayerInfo::ActivationFunction::SQRT:
// Reduce range as sqrt should take a non-negative number
bounds = std::make_pair(0._h, 128._h);
break;
default:
bounds = std::make_pair(-255._h, 255._h);
break;
}
break;
}
case DataType::F32:
switch(activation)
{
case ActivationLayerInfo::ActivationFunction::SOFT_RELU:
// Reduce range as exponent overflows
bounds = std::make_pair(-40.f, 40.f);
break;
case ActivationLayerInfo::ActivationFunction::SQRT:
// Reduce range as sqrt should take a non-negative number
bounds = std::make_pair(0.f, 255.f);
break;
default:
bounds = std::make_pair(-255.f, 255.f);
break;
}
break;
default:
ARM_COMPUTE_ERROR("Unsupported data type");
}
return bounds;
}
/** Fill mask with the corresponding given pattern.
*
* @param[in,out] mask Mask to be filled according to pattern
* @param[in] cols Columns (width) of mask
* @param[in] rows Rows (height) of mask
* @param[in] pattern Pattern to fill the mask according to
*/
void fill_mask_from_pattern(uint8_t *mask, int cols, int rows, MatrixPattern pattern);
/** Calculate output tensor shape give a vector of input tensor to concatenate
*
* @param[in] input_shapes Shapes of the tensors to concatenate across depth.
*
* @return The shape of output concatenated tensor.
*/
TensorShape calculate_depth_concatenate_shape(const std::vector<TensorShape> &input_shapes);
/** Calculate output tensor shape for the concatenate operation along a given axis
*
* @param[in] input_shapes Shapes of the tensors to concatenate across width.
* @param[in] axis Axis to use for the concatenate operation
*
* @return The shape of output concatenated tensor.
*/
TensorShape calculate_concatenate_shape(const std::vector<TensorShape> &input_shapes, size_t axis);
/** Parameters of Harris Corners algorithm. */
struct HarrisCornersParameters
{
float threshold{ 0.f }; /**< Threshold */
float sensitivity{ 0.f }; /**< Sensitivity */
float min_dist{ 0.f }; /**< Minimum distance */
uint8_t constant_border_value{ 0 }; /**< Border value */
};
/** Generate parameters for Harris Corners algorithm. */
HarrisCornersParameters harris_corners_parameters();
/** Parameters of Canny edge algorithm. */
struct CannyEdgeParameters
{
int32_t upper_thresh{ 255 };
int32_t lower_thresh{ 0 };
uint8_t constant_border_value{ 0 };
};
/** Generate parameters for Canny edge algorithm. */
CannyEdgeParameters canny_edge_parameters();
/** Helper function to fill the Lut random by a ILutAccessor.
*
* @param[in,out] table Accessor at the Lut.
*
*/
template <typename T>
void fill_lookuptable(T &&table)
{
std::mt19937 generator(library->seed());
std::uniform_int_distribution<typename T::value_type> distribution(std::numeric_limits<typename T::value_type>::min(), std::numeric_limits<typename T::value_type>::max());
for(int i = std::numeric_limits<typename T::value_type>::min(); i <= std::numeric_limits<typename T::value_type>::max(); i++)
{
table[i] = distribution(generator);
}
}
/** Convert an asymmetric quantized simple tensor into float using tensor quantization information.
*
* @param[in] src Quantized tensor.
*
* @return Float tensor.
*/
template <typename T>
SimpleTensor<float> convert_from_asymmetric(const SimpleTensor<T> &src);
/** Convert float simple tensor into quantized using specified quantization information.
*
* @param[in] src Float tensor.
* @param[in] quantization_info Quantification information.
*
* @return Quantized tensor.
*/
template <typename T>
SimpleTensor<T> convert_to_asymmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info);
/** Convert quantized simple tensor into float using tensor quantization information.
*
* @param[in] src Quantized tensor.
*
* @return Float tensor.
*/
template <typename T>
SimpleTensor<float> convert_from_symmetric(const SimpleTensor<T> &src);
/** Convert float simple tensor into quantized using specified quantization information.
*
* @param[in] src Float tensor.
* @param[in] quantization_info Quantification information.
*
* @return Quantized tensor.
*/
template <typename T>
SimpleTensor<T> convert_to_symmetric(const SimpleTensor<float> &src, const QuantizationInfo &quantization_info);
/** Matrix multiply between 2 float simple tensors
*
* @param[in] a Input tensor A
* @param[in] b Input tensor B
* @param[out] out Output tensor
*
*/
template <typename T>
void matrix_multiply(const SimpleTensor<T> &a, const SimpleTensor<T> &b, SimpleTensor<T> &out);
/** Transpose matrix
*
* @param[in] in Input tensor
* @param[out] out Output tensor
*
*/
template <typename T>
void transpose_matrix(const SimpleTensor<T> &in, SimpleTensor<T> &out);
/** Get a 2D tile from a tensor
*
* @note In case of out-of-bound reads, the tile will be filled with zeros
*
* @param[in] in Input tensor
* @param[out] tile Tile
* @param[in] coord Coordinates
*/
template <typename T>
void get_tile(const SimpleTensor<T> &in, SimpleTensor<T> &tile, const Coordinates &coord);
/** Fill with zeros the input tensor in the area defined by anchor and shape
*
* @param[in] in Input tensor to fill with zeros
* @param[out] anchor Starting point of the zeros area
* @param[in] shape Ending point of the zeros area
*/
template <typename T>
void zeros(SimpleTensor<T> &in, const Coordinates &anchor, const TensorShape &shape);
/** Helper function to compute quantized min and max bounds
*
* @param[in] quant_info Quantization info to be used for conversion
* @param[in] min Floating point minimum value to be quantized
* @param[in] max Floating point maximum value to be quantized
*/
std::pair<int, int> get_quantized_bounds(const QuantizationInfo &quant_info, float min, float max);
/** Helper function to compute asymmetric quantized signed min and max bounds
*
* @param[in] quant_info Quantization info to be used for conversion
* @param[in] min Floating point minimum value to be quantized
* @param[in] max Floating point maximum value to be quantized
*/
std::pair<int, int> get_quantized_qasymm8_signed_bounds(const QuantizationInfo &quant_info, float min, float max);
/** Helper function to compute symmetric quantized min and max bounds
*
* @param[in] quant_info Quantization info to be used for conversion
* @param[in] min Floating point minimum value to be quantized
* @param[in] max Floating point maximum value to be quantized
* @param[in] channel_id Channel id for per channel quantization info.
*/
std::pair<int, int> get_symm_quantized_per_channel_bounds(const QuantizationInfo &quant_info, float min, float max, size_t channel_id = 0);
} // namespace validation
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_VALIDATION_HELPERS_H */