blob: 14f071eed0780821fe40d110f63f3a869f9044aa [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "tests/AssetsLibrary.h"
#include "tests/Globals.h"
#include "tests/IAccessor.h"
#include "tests/framework/Asserts.h"
#include "tests/framework/Fixture.h"
#include "tests/validation/Helpers.h"
#include "tests/validation/reference/DeconvolutionLayer.h"
#include <random>
namespace arm_compute
{
namespace test
{
namespace validation
{
using namespace arm_compute::misc::shape_calculator;
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW>
class DeconvolutionLayerFixtureBase : public framework::Fixture
{
public:
using TBias = typename std::conditional < std::is_same<typename std::decay<T>::type, uint8_t>::value || std::is_same<typename std::decay<T>::type, int8_t>::value, int32_t, T >::type;
public:
template <typename...>
void setup(TensorShape input_shape, TensorShape weights_shape, TensorShape bias_shape, TensorShape output_shape, PadStrideInfo info,
DataType data_type, DataType weights_data_type, DataLayout data_layout,
QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, QuantizationInfo weights_quantization_info, bool add_bias)
{
_data_type = data_type;
_weights_data_type = weights_data_type;
_bias_data_type = is_data_type_quantized_asymmetric(data_type) ? DataType::S32 : data_type;
_data_layout = data_layout;
_input_quantization_info = input_quantization_info;
_output_quantization_info = output_quantization_info;
_weights_quantization_info = weights_quantization_info;
_target = compute_target(input_shape, weights_shape, bias_shape, output_shape, info, add_bias);
_reference = compute_reference(input_shape, weights_shape, bias_shape, output_shape, info, add_bias);
}
protected:
template <typename U>
void fill(U &&tensor, int i)
{
switch(tensor.data_type())
{
case DataType::QASYMM8:
{
std::pair<int, int> bounds = get_quantized_bounds(tensor.quantization_info(), -1.0f, 1.0f);
std::uniform_int_distribution<uint8_t> distribution(bounds.first, bounds.second);
library->fill(tensor, distribution, i);
break;
}
case DataType::QASYMM8_SIGNED:
{
std::pair<int, int> bounds = get_quantized_qasymm8_signed_bounds(tensor.quantization_info(), -1.0f, 1.0f);
std::uniform_int_distribution<int8_t> distribution(bounds.first, bounds.second);
library->fill(tensor, distribution, i);
break;
}
case DataType::QSYMM8_PER_CHANNEL:
{
int min_bound = 128;
int max_bound = -127;
for(size_t i = 0; i < _input_quantization_info.scale().size(); i++)
{
std::pair<int, int> bounds = get_symm_quantized_per_channel_bounds(tensor.quantization_info(), -1.0f, 1.0f);
if(bounds.first < min_bound)
{
min_bound = bounds.first;
}
if(bounds.second > max_bound)
{
max_bound = bounds.second;
}
}
std::uniform_int_distribution<int8_t> distribution(min_bound, max_bound);
library->fill(tensor, distribution, i);
break;
}
case DataType::S32:
{
std::uniform_int_distribution<int32_t> distribution(-100, 100);
library->fill(tensor, distribution, i);
break;
}
case DataType::F16:
{
arm_compute::utils::uniform_real_distribution_16bit<half> distribution{ -1.0f, 1.0f };
library->fill(tensor, distribution, i);
break;
}
case DataType::F32:
{
std::uniform_real_distribution<float> distribution(-1.0f, 1.0f);
library->fill(tensor, distribution, i);
break;
}
default:
library->fill_tensor_uniform(tensor, i);
}
}
template <typename U>
void fill_zeros(U &&tensor)
{
switch(tensor.data_type())
{
case DataType::S32:
{
library->fill_tensor_value(tensor, 0);
break;
}
case DataType::F16:
library->fill_tensor_value(tensor, static_cast<half>(0.0f));
break;
case DataType::F32:
library->fill_tensor_value(tensor, static_cast<float>(0.0f));
break;
default:
ARM_COMPUTE_ERROR("Not supported");
}
}
TensorType compute_target(TensorShape input_shape, TensorShape weights_shape, const TensorShape bias_shape, TensorShape output_shape,
const PadStrideInfo &info, bool add_bias)
{
if(_data_layout == DataLayout::NHWC)
{
permute(input_shape, PermutationVector(2U, 0U, 1U));
permute(weights_shape, PermutationVector(2U, 0U, 1U));
permute(output_shape, PermutationVector(2U, 0U, 1U));
}
// Create tensors
TensorType src = create_tensor<TensorType>(input_shape, _data_type, 1, _input_quantization_info, _data_layout);
TensorType weights = create_tensor<TensorType>(weights_shape, _weights_data_type, 1, _weights_quantization_info, _data_layout);
TensorType bias = create_tensor<TensorType>(bias_shape, _bias_data_type, 1, _input_quantization_info, _data_layout);
TensorType dst = create_tensor<TensorType>(output_shape, _data_type, 1, _output_quantization_info, _data_layout);
// Create and configure function
FunctionType conv;
conv.configure(&src, &weights, add_bias ? &bias : nullptr, &dst, info);
ARM_COMPUTE_ASSERT(src.info()->is_resizable());
ARM_COMPUTE_ASSERT(weights.info()->is_resizable());
if(add_bias)
{
ARM_COMPUTE_ASSERT(bias.info()->is_resizable());
}
ARM_COMPUTE_ASSERT(dst.info()->is_resizable());
// Allocate tensors
src.allocator()->allocate();
weights.allocator()->allocate();
if(add_bias)
{
bias.allocator()->allocate();
}
dst.allocator()->allocate();
ARM_COMPUTE_ASSERT(!src.info()->is_resizable());
ARM_COMPUTE_ASSERT(!weights.info()->is_resizable());
if(add_bias)
{
ARM_COMPUTE_ASSERT(!bias.info()->is_resizable());
}
ARM_COMPUTE_ASSERT(!dst.info()->is_resizable());
// Fill tensors
fill(AccessorType(src), 0);
fill(AccessorType(weights), 1);
if(add_bias)
{
fill(AccessorType(bias), 2);
}
// Compute DeconvolutionLayer function
conv.run();
return dst;
}
SimpleTensor<T> compute_reference(const TensorShape &input_shape, const TensorShape &weights_shape, const TensorShape &bias_shape, const TensorShape &output_shape,
const PadStrideInfo &info, bool add_bias)
{
// Create reference
SimpleTensor<T> src{ input_shape, _data_type, 1, _input_quantization_info };
SimpleTensor<TW> weights{ weights_shape, _weights_data_type, 1, _weights_quantization_info };
SimpleTensor<TBias> bias{ bias_shape, _bias_data_type, 1, _input_quantization_info };
// Fill reference
fill(src, 0);
fill(weights, 1);
if(add_bias)
{
fill(bias, 2);
}
else
{
fill_zeros(bias);
}
return reference::deconvolution_layer<T, TW>(src, weights, bias, output_shape, info, _output_quantization_info);
}
TensorType _target{};
SimpleTensor<T> _reference{};
DataType _data_type{};
DataType _weights_data_type{};
DataType _bias_data_type{};
DataLayout _data_layout{};
QuantizationInfo _input_quantization_info{};
QuantizationInfo _output_quantization_info{};
QuantizationInfo _weights_quantization_info{};
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, unsigned int kernel_size_x, unsigned int kernel_size_y>
class DeconvolutionValidationFixture : public DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, T>
{
public:
template <typename...>
void setup(TensorShape input_shape, unsigned int sx, unsigned int sy, unsigned int padx, unsigned int pady,
unsigned int num_kernels, DataType data_type, DataLayout data_layout, bool add_bias)
{
ARM_COMPUTE_ERROR_ON_MSG(kernel_size_x != kernel_size_y, "Only square kernels supported");
const TensorShape weights_shape(kernel_size_x, kernel_size_y, input_shape.z(), num_kernels);
const TensorShape bias_shape(num_kernels);
const PadStrideInfo info(sx, sy, padx, pady, DimensionRoundingType::CEIL);
auto out_dim = deconvolution_output_dimensions(input_shape.x(), input_shape.y(), kernel_size_x, kernel_size_y, info);
TensorInfo input_info(input_shape, 1, data_type);
TensorInfo weights_info(weights_shape, 1, data_type);
TensorShape output_shape = compute_deconvolution_output_shape(out_dim, input_info, weights_info);
DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, data_type, data_type, data_layout, QuantizationInfo(),
QuantizationInfo(), QuantizationInfo(), add_bias);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, unsigned int kernel_size_x, unsigned int kernel_size_y>
class DeconvolutionValidationAsymmFixture : public DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, T>
{
public:
template <typename...>
void setup(TensorShape input_shape, unsigned int sx, unsigned int sy, unsigned int pad_left, unsigned int pad_right, unsigned int pad_top,
unsigned int pad_bottom, unsigned int num_kernels, DataType data_type, DataLayout data_layout, bool add_bias)
{
ARM_COMPUTE_ERROR_ON_MSG(kernel_size_x != kernel_size_y, "Only square kernels supported");
const TensorShape weights_shape(kernel_size_x, kernel_size_y, input_shape.z(), num_kernels);
const TensorShape bias_shape(num_kernels);
const PadStrideInfo info(sx, sy, pad_left, pad_right, pad_top, pad_bottom, DimensionRoundingType::CEIL);
auto out_dim = deconvolution_output_dimensions(input_shape.x(), input_shape.y(), kernel_size_x, kernel_size_y, info);
TensorInfo input_info(input_shape, 1, data_type);
TensorInfo weights_info(weights_shape, 1, data_type);
TensorShape output_shape = compute_deconvolution_output_shape(out_dim, input_info, weights_info);
DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, data_type, data_type, data_layout, QuantizationInfo(),
QuantizationInfo(), QuantizationInfo(), add_bias);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, unsigned int kernel_size_x, unsigned int kernel_size_y>
class DeconvolutionValidationQuantizedFixture : public DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, T>
{
public:
template <typename...>
void setup(TensorShape input_shape, unsigned int sx, unsigned int sy, unsigned int padx, unsigned int pady,
unsigned int num_kernels, DataType data_type, DataLayout data_layout, QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, bool add_bias)
{
ARM_COMPUTE_ERROR_ON_MSG(kernel_size_x != kernel_size_y, "Only square kernels supported");
const TensorShape weights_shape(kernel_size_x, kernel_size_y, input_shape.z(), num_kernels);
const TensorShape bias_shape(num_kernels);
const PadStrideInfo info(sx, sy, padx, pady, DimensionRoundingType::CEIL);
auto out_dim = deconvolution_output_dimensions(input_shape.x(), input_shape.y(), kernel_size_x, kernel_size_y, info);
TensorInfo input_info(input_shape, 1, data_type, input_quantization_info);
TensorInfo weights_info(weights_shape, 1, data_type, input_quantization_info);
TensorShape output_shape = compute_deconvolution_output_shape(out_dim, input_info, weights_info);
DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, T>::setup(input_shape, weights_shape, bias_shape, output_shape, info, data_type, data_type, data_layout,
input_quantization_info,
output_quantization_info, input_quantization_info, add_bias);
}
};
template <typename TensorType, typename AccessorType, typename FunctionType, typename T, typename TW, unsigned int kernel_size_x, unsigned int kernel_size_y>
class DeconvolutionValidationQuantizedPerChannelFixture : public DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, TW>
{
public:
template <typename...>
void setup(TensorShape input_shape, unsigned int sx, unsigned int sy, unsigned int padx, unsigned int pady,
unsigned int num_kernels, DataType data_type, DataLayout data_layout, QuantizationInfo input_quantization_info, QuantizationInfo output_quantization_info, bool add_bias,
DataType weights_data_type)
{
ARM_COMPUTE_ERROR_ON_MSG(kernel_size_x != kernel_size_y, "Only square kernels supported");
const TensorShape weights_shape(kernel_size_x, kernel_size_y, input_shape.z(), num_kernels);
const TensorShape bias_shape(num_kernels);
const PadStrideInfo info(sx, sy, padx, pady, DimensionRoundingType::CEIL);
auto out_dim = deconvolution_output_dimensions(input_shape.x(), input_shape.y(), kernel_size_x, kernel_size_y, info);
TensorInfo input_info(input_shape, 1, data_type, input_quantization_info);
TensorInfo weights_info(weights_shape, 1, weights_data_type, input_quantization_info);
TensorShape output_shape = compute_deconvolution_output_shape(out_dim, input_info, weights_info);
std::vector<float> weights_scales{};
std::mt19937 gen(library->seed());
std::uniform_real_distribution<float> dis(0.01f, 1.f);
for(size_t i = 0; i < output_shape[2]; ++i)
{
weights_scales.push_back(dis(gen));
}
DeconvolutionLayerFixtureBase<TensorType, AccessorType, FunctionType, T, TW>::setup(input_shape, weights_shape, bias_shape, output_shape, info, data_type, weights_data_type, data_layout,
input_quantization_info,
output_quantization_info, QuantizationInfo(weights_scales), add_bias);
}
};
} // namespace validation
} // namespace test
} // namespace arm_compute