blob: c1bd7f87b59452da00870753bf66f5a83dcf280e [file] [log] [blame]
/*
* Copyright (c) 2017-2020 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TEST_SIMPLE_TENSOR_H
#define ARM_COMPUTE_TEST_SIMPLE_TENSOR_H
#include "arm_compute/core/TensorShape.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "tests/IAccessor.h"
#include "tests/Utils.h"
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <stdexcept>
#include <utility>
namespace arm_compute
{
namespace test
{
class RawTensor;
/** Simple tensor object that stores elements in a consecutive chunk of memory.
*
* It can be created by either loading an image from a file which also
* initialises the content of the tensor or by explcitly specifying the size.
* The latter leaves the content uninitialised.
*
* Furthermore, the class provides methods to convert the tensor's values into
* different image format.
*/
template <typename T>
class SimpleTensor : public IAccessor
{
public:
/** Create an uninitialised tensor. */
SimpleTensor() = default;
/** Create an uninitialised tensor of the given @p shape and @p format.
*
* @param[in] shape Shape of the new raw tensor.
* @param[in] format Format of the new raw tensor.
*/
SimpleTensor(TensorShape shape, Format format);
/** Create an uninitialised tensor of the given @p shape and @p data type.
*
* @param[in] shape Shape of the new raw tensor.
* @param[in] data_type Data type of the new raw tensor.
* @param[in] num_channels (Optional) Number of channels (default = 1).
* @param[in] quantization_info (Optional) Quantization info for asymmetric quantization (default = empty).
* @param[in] data_layout (Optional) Data layout of the tensor (default = NCHW).
*/
SimpleTensor(TensorShape shape, DataType data_type,
int num_channels = 1,
QuantizationInfo quantization_info = QuantizationInfo(),
DataLayout data_layout = DataLayout::NCHW);
/** Create a deep copy of the given @p tensor.
*
* @param[in] tensor To be copied tensor.
*/
SimpleTensor(const SimpleTensor &tensor);
/** Create a deep copy of the given @p tensor.
*
* @param[in] tensor To be copied tensor.
*
* @return a copy of the given tensor.
*/
SimpleTensor &operator=(SimpleTensor tensor);
/** Allow instances of this class to be move constructed */
SimpleTensor(SimpleTensor &&) = default;
/** Default destructor. */
~SimpleTensor() = default;
/** Tensor value type */
using value_type = T;
/** Tensor buffer pointer type */
using Buffer = std::unique_ptr<value_type[]>;
friend class RawTensor;
/** Return value at @p offset in the buffer.
*
* @param[in] offset Offset within the buffer.
*
* @return value in the buffer.
*/
T &operator[](size_t offset);
/** Return constant value at @p offset in the buffer.
*
* @param[in] offset Offset within the buffer.
*
* @return constant value in the buffer.
*/
const T &operator[](size_t offset) const;
/** Shape of the tensor.
*
* @return the shape of the tensor.
*/
TensorShape shape() const override;
/** Size of each element in the tensor in bytes.
*
* @return the size of each element in the tensor in bytes.
*/
size_t element_size() const override;
/** Total size of the tensor in bytes.
*
* @return the total size of the tensor in bytes.
*/
size_t size() const override;
/** Image format of the tensor.
*
* @return the format of the tensor.
*/
Format format() const override;
/** Data layout of the tensor.
*
* @return the data layout of the tensor.
*/
DataLayout data_layout() const override;
/** Data type of the tensor.
*
* @return the data type of the tensor.
*/
DataType data_type() const override;
/** Number of channels of the tensor.
*
* @return the number of channels of the tensor.
*/
int num_channels() const override;
/** Number of elements of the tensor.
*
* @return the number of elements of the tensor.
*/
int num_elements() const override;
/** Available padding around the tensor.
*
* @return the available padding around the tensor.
*/
PaddingSize padding() const override;
/** Quantization info in case of asymmetric quantized type
*
* @return
*/
QuantizationInfo quantization_info() const override;
/** Constant pointer to the underlying buffer.
*
* @return a constant pointer to the data.
*/
const T *data() const;
/** Pointer to the underlying buffer.
*
* @return a pointer to the data.
*/
T *data();
/** Read only access to the specified element.
*
* @param[in] coord Coordinates of the desired element.
*
* @return A pointer to the desired element.
*/
const void *operator()(const Coordinates &coord) const override;
/** Access to the specified element.
*
* @param[in] coord Coordinates of the desired element.
*
* @return A pointer to the desired element.
*/
void *operator()(const Coordinates &coord) override;
/** Swaps the content of the provided tensors.
*
* @param[in, out] tensor1 Tensor to be swapped.
* @param[in, out] tensor2 Tensor to be swapped.
*/
template <typename U>
friend void swap(SimpleTensor<U> &tensor1, SimpleTensor<U> &tensor2);
protected:
Buffer _buffer{ nullptr };
TensorShape _shape{};
Format _format{ Format::UNKNOWN };
DataType _data_type{ DataType::UNKNOWN };
int _num_channels{ 0 };
QuantizationInfo _quantization_info{};
DataLayout _data_layout{ DataLayout::UNKNOWN };
};
template <typename T1, typename T2>
SimpleTensor<T1> copy_tensor(const SimpleTensor<T2> &tensor)
{
SimpleTensor<T1> st(tensor.shape(), tensor.data_type(),
tensor.num_channels(),
tensor.quantization_info(),
tensor.data_layout());
for(size_t n = 0; n < size_t(st.num_elements()); n++)
{
st.data()[n] = static_cast<T1>(tensor.data()[n]);
}
return st;
}
template <typename T1, typename T2, typename std::enable_if<std::is_same<T1, T2>::value, int>::type = 0>
SimpleTensor<T1> copy_tensor(const SimpleTensor<half> &tensor)
{
SimpleTensor<T1> st(tensor.shape(), tensor.data_type(),
tensor.num_channels(),
tensor.quantization_info(),
tensor.data_layout());
memcpy((void *)st.data(), (const void *)tensor.data(), size_t(st.num_elements() * sizeof(T1)));
return st;
}
template < typename T1, typename T2, typename std::enable_if < (std::is_same<T1, half>::value || std::is_same<T2, half>::value), int >::type = 0 >
SimpleTensor<T1> copy_tensor(const SimpleTensor<half> &tensor)
{
SimpleTensor<T1> st(tensor.shape(), tensor.data_type(),
tensor.num_channels(),
tensor.quantization_info(),
tensor.data_layout());
for(size_t n = 0; n < size_t(st.num_elements()); n++)
{
st.data()[n] = half_float::detail::half_cast<T1, T2>(tensor.data()[n]);
}
return st;
}
template <typename T>
SimpleTensor<T>::SimpleTensor(TensorShape shape, Format format)
: _buffer(nullptr),
_shape(shape),
_format(format),
_quantization_info(),
_data_layout(DataLayout::NCHW)
{
_num_channels = num_channels();
_buffer = std::make_unique<T[]>(num_elements() * _num_channels);
}
template <typename T>
SimpleTensor<T>::SimpleTensor(TensorShape shape, DataType data_type, int num_channels, QuantizationInfo quantization_info, DataLayout data_layout)
: _buffer(nullptr),
_shape(shape),
_data_type(data_type),
_num_channels(num_channels),
_quantization_info(quantization_info),
_data_layout(data_layout)
{
_buffer = std::make_unique<T[]>(this->_shape.total_size() * _num_channels);
}
template <typename T>
SimpleTensor<T>::SimpleTensor(const SimpleTensor &tensor)
: _buffer(nullptr),
_shape(tensor.shape()),
_format(tensor.format()),
_data_type(tensor.data_type()),
_num_channels(tensor.num_channels()),
_quantization_info(tensor.quantization_info()),
_data_layout(tensor.data_layout())
{
_buffer = std::make_unique<T[]>(tensor.num_elements() * _num_channels);
std::copy_n(tensor.data(), this->_shape.total_size() * _num_channels, _buffer.get());
}
template <typename T>
SimpleTensor<T> &SimpleTensor<T>::operator=(SimpleTensor tensor)
{
swap(*this, tensor);
return *this;
}
template <typename T>
T &SimpleTensor<T>::operator[](size_t offset)
{
return _buffer[offset];
}
template <typename T>
const T &SimpleTensor<T>::operator[](size_t offset) const
{
return _buffer[offset];
}
template <typename T>
TensorShape SimpleTensor<T>::shape() const
{
return _shape;
}
template <typename T>
size_t SimpleTensor<T>::element_size() const
{
return num_channels() * element_size_from_data_type(data_type());
}
template <typename T>
QuantizationInfo SimpleTensor<T>::quantization_info() const
{
return _quantization_info;
}
template <typename T>
size_t SimpleTensor<T>::size() const
{
const size_t size = std::accumulate(_shape.cbegin(), _shape.cend(), 1, std::multiplies<size_t>());
return size * element_size();
}
template <typename T>
Format SimpleTensor<T>::format() const
{
return _format;
}
template <typename T>
DataLayout SimpleTensor<T>::data_layout() const
{
return _data_layout;
}
template <typename T>
DataType SimpleTensor<T>::data_type() const
{
if(_format != Format::UNKNOWN)
{
return data_type_from_format(_format);
}
else
{
return _data_type;
}
}
template <typename T>
int SimpleTensor<T>::num_channels() const
{
switch(_format)
{
case Format::U8:
case Format::U16:
case Format::S16:
case Format::U32:
case Format::S32:
case Format::F16:
case Format::F32:
return 1;
// Because the U and V channels are subsampled
// these formats appear like having only 2 channels:
case Format::YUYV422:
case Format::UYVY422:
return 2;
case Format::UV88:
return 2;
case Format::RGB888:
return 3;
case Format::RGBA8888:
return 4;
case Format::UNKNOWN:
return _num_channels;
//Doesn't make sense for planar formats:
case Format::NV12:
case Format::NV21:
case Format::IYUV:
case Format::YUV444:
default:
return 0;
}
}
template <typename T>
int SimpleTensor<T>::num_elements() const
{
return _shape.total_size();
}
template <typename T>
PaddingSize SimpleTensor<T>::padding() const
{
return PaddingSize(0);
}
template <typename T>
const T *SimpleTensor<T>::data() const
{
return _buffer.get();
}
template <typename T>
T *SimpleTensor<T>::data()
{
return _buffer.get();
}
template <typename T>
const void *SimpleTensor<T>::operator()(const Coordinates &coord) const
{
return _buffer.get() + coord2index(_shape, coord) * _num_channels;
}
template <typename T>
void *SimpleTensor<T>::operator()(const Coordinates &coord)
{
return _buffer.get() + coord2index(_shape, coord) * _num_channels;
}
template <typename U>
void swap(SimpleTensor<U> &tensor1, SimpleTensor<U> &tensor2)
{
// Use unqualified call to swap to enable ADL. But make std::swap available
// as backup.
using std::swap;
swap(tensor1._shape, tensor2._shape);
swap(tensor1._format, tensor2._format);
swap(tensor1._data_type, tensor2._data_type);
swap(tensor1._num_channels, tensor2._num_channels);
swap(tensor1._quantization_info, tensor2._quantization_info);
swap(tensor1._buffer, tensor2._buffer);
}
} // namespace test
} // namespace arm_compute
#endif /* ARM_COMPUTE_TEST_SIMPLE_TENSOR_H */