blob: a8df46631443251be886d0aab91251544c1ca5cc [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLQLSTMLayer.h"
#include "arm_compute/core/KernelDescriptors.h"
#include "arm_compute/core/QuantizationInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/InfoHelpers.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "src/core/CL/kernels/CLFillBorderKernel.h"
#include "src/core/CL/kernels/CLQLSTMLayerNormalizationKernel.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/gpu/cl/kernels/ClGemmLowpReductionKernel.h"
#include "src/common/utils/Log.h"
namespace arm_compute
{
using namespace arm_compute::utils::info_helpers;
using namespace arm_compute::opencl::kernels;
namespace
{
Status validate_mm(GEMMLowpOutputStageInfo &gemmlowp_info, const ITensorInfo *mm_input, const ITensorInfo *mm_weights, const ITensorInfo *bias,
float gemmlowp_scale, const TensorInfo *mm_res_info, const TensorInfo *outstage_tensor_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(mm_input, mm_weights, nullptr, mm_res_info));
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(mm_res_info, bias, outstage_tensor_info, gemmlowp_info));
return Status{};
}
} // namespace
Status CLQLSTMLayer::TensorCopyKernel::validate(const ITensorInfo &src, const ITensorInfo &dst)
{
ARM_COMPUTE_RETURN_ERROR_ON(src.tensor_shape().num_dimensions() > max_dimension_supported);
ARM_COMPUTE_RETURN_ERROR_ON(dst.tensor_shape().num_dimensions() > max_dimension_supported);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(&src, &dst);
ARM_COMPUTE_RETURN_ERROR_ON(dst.tensor_shape().y() != src.tensor_shape().y());
return Status{};
}
void CLQLSTMLayer::TensorCopyKernel::configure(ICLTensor &src, ICLTensor &dst)
{
ARM_COMPUTE_ERROR_THROW_ON(CLQLSTMLayer::TensorCopyKernel::validate(*src.info(), *dst.info()));
_src = &src;
_dst = &dst;
_row_size = std::min(_src->info()->tensor_shape().x(), _dst->info()->tensor_shape().x());
_window = calculate_max_window(*_src->info(), Steps());
}
void CLQLSTMLayer::TensorCopyKernel::run()
{
auto &q = CLScheduler::get().queue();
_src->map(q, true);
_dst->map(q, true);
Iterator input_iter{ _src, _window };
Iterator output_iter{ _dst, _window };
execute_window_loop(_window, [&](const Coordinates &)
{
memcpy(output_iter.ptr(), input_iter.ptr(), _row_size);
},
input_iter, output_iter);
_src->unmap(q);
_dst->unmap(q);
}
CLQLSTMLayer::CLQLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _input_to_input_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_recurrent_to_input_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_input_to_forget_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_recurrent_to_forget_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_input_to_cell_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_recurrent_to_cell_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_input_to_output_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_recurrent_to_output_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_projection_reduction(std::make_unique<ClGemmLowpMatrixAReductionKernel>()),
_layer_norms(),
_copy_output()
{
for(auto &norm : _layer_norms)
{
norm = std::make_unique<CLQLSTMLayerNormalizationKernel>();
}
_memory_group = MemoryGroup(std::move(memory_manager));
}
CLQLSTMLayer::~CLQLSTMLayer() = default;
void CLQLSTMLayer::configure_layer_norm(LayerNormGate g, const ICLTensor *in)
{
ARM_COMPUTE_ERROR_ON(!_has_layer_norm);
CLTensor *out = &get_layer_norm_output(g);
_memory_group.manage(out);
out->allocator()->init(*(in->info()));
get_layer_norm(g).configure(in, out, get_layer_norm_weight(g), get_layer_norm_bias(g));
}
Status CLQLSTMLayer::validate_layer_norm(const ITensorInfo &in, const ITensorInfo &weight, const ITensorInfo &bias)
{
// Output quantization scale will be different, but ignored here
// since it will be configured at configure() stage.
const TensorInfo out
{
in
};
return CLQLSTMLayerNormalizationKernel::validate(&in, &out, &weight, &bias);
}
void CLQLSTMLayer::configure_mm(const CLCompileContext &compile_context, CLGEMMLowpMatrixMultiplyCore &mm, CLGEMMLowpOutputStage &outstage, GEMMLowpOutputStageInfo &gemmlowp_info,
const ICLTensor *mm_input, const ICLTensor *mm_weights, const ICLTensor *bias,
CLTensor *mm_res, CLTensor *outstage_res, float gemmlowp_scale,
const TensorInfo &mm_res_info, const TensorInfo &outstage_tensor_info)
{
_memory_group.manage(mm_res);
_memory_group.manage(outstage_res);
mm_res->allocator()->init(mm_res_info);
outstage_res->allocator()->init(outstage_tensor_info);
// Configure matrix-multiplication
mm.configure(compile_context, mm_input, mm_weights, nullptr, mm_res);
// Configure output stage
quantization::calculate_quantized_multiplier(gemmlowp_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
outstage.configure(compile_context, mm_res, bias, outstage_res, gemmlowp_info);
mm_res->allocator()->allocate();
}
void CLQLSTMLayer::configure(const ICLTensor *input,
const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
ICLTensor *cell_state_in, ICLTensor *output_state_in,
ICLTensor *cell_state_out, ICLTensor *output_state_out, ICLTensor *output,
const LSTMParams<ICLTensor> &lstm_params)
{
configure(CLKernelLibrary::get().get_compile_context(), input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias,
cell_state_in, output_state_in, cell_state_out, output_state_out, output, lstm_params);
}
void CLQLSTMLayer::configure(const CLCompileContext &compile_context, const ICLTensor *input,
const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
ICLTensor *cell_state_in, ICLTensor *output_state_in,
ICLTensor *cell_state_out, ICLTensor *output_state_out, ICLTensor *output,
const LSTMParams<ICLTensor> &lstm_params)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in,
cell_state_out, output_state_out, output);
ARM_COMPUTE_LOG_PARAMS(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in,
cell_state_out, output_state_out, output, lstm_params);
// Set lstm parameters
LSTMParams<ITensorInfo> lstm_params_info{};
build_lstm_params_tensor_info(lstm_params, &lstm_params_info);
// Validate
ARM_COMPUTE_ERROR_THROW_ON(CLQLSTMLayer::validate(input->info(), input_to_forget_weights->info(), input_to_cell_weights->info(), input_to_output_weights->info(),
recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
cell_state_in->info(), output_state_in->info(), cell_state_out->info(), output_state_out->info(), output->info(),
lstm_params_info));
const int batch_size = input->info()->dimension(1);
const int num_units = input_to_output_weights->info()->dimension(1);
const int output_size = output_state_out->info()->dimension(_out_state_output_size_dimension_idx);
const UniformQuantizationInfo qinput = input->info()->quantization_info().uniform();
const UniformQuantizationInfo qcell_state_in = cell_state_in->info()->quantization_info().uniform();
const UniformQuantizationInfo qoutput_state_in = output_state_in->info()->quantization_info().uniform();
_projection_bias = lstm_params.projection_bias();
_input_to_forget_weights = input_to_forget_weights;
_input_to_cell_weights = input_to_cell_weights;
_input_to_output_weights = input_to_output_weights;
_recurrent_to_forget_weights = recurrent_to_forget_weights;
_recurrent_to_cell_weights = recurrent_to_cell_weights;
_recurrent_to_output_weights = recurrent_to_output_weights;
_projection_weights = lstm_params.projection_weights();
// Layer normalization
_has_layer_norm = lstm_params.use_layer_norm();
if(_has_layer_norm)
{
set_layer_norm_weight(lstm_params.forget_layer_norm_weights(), LayerNormGate::Forget);
set_layer_norm_weight(lstm_params.cell_layer_norm_weights(), LayerNormGate::Cell);
set_layer_norm_weight(lstm_params.input_layer_norm_weights(), LayerNormGate::Input);
set_layer_norm_weight(lstm_params.output_layer_norm_weights(), LayerNormGate::Output);
set_layer_norm_bias(forget_gate_bias, LayerNormGate::Forget);
set_layer_norm_bias(cell_bias, LayerNormGate::Cell);
set_layer_norm_bias(lstm_params.input_gate_bias(), LayerNormGate::Input);
set_layer_norm_bias(output_gate_bias, LayerNormGate::Output);
}
_has_cifg = lstm_params.has_cifg_opt();
_has_projection = lstm_params.has_projection();
_has_peephole = lstm_params.has_peephole_opt();
// Calculate and decompose effective scales for optimizing matmul calculation
const int32_t cell_shift = log2(qcell_state_in.scale);
// Calculate quantized parameters for clipping.
int16_t quantized_cell_clip = 0;
if(lstm_params.cell_clip() > 0.0f)
{
quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in);
}
_has_cell_clipping = quantized_cell_clip > 0;
// Precompute effective bias for optimizing the matmul computations.
if(!_has_cifg)
{
_input_to_input_weights = lstm_params.input_to_input_weights();
_recurrent_to_input_weights = lstm_params.recurrent_to_input_weights();
_input_to_input_reduction->configure(compile_context, _input_to_input_weights->info(), _input_to_input_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_input_reduction->configure(compile_context, _recurrent_to_input_weights->info(), _recurrent_to_input_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false,
-qoutput_state_in.offset, true));
}
_input_to_forget_reduction->configure(compile_context, input_to_forget_weights->info(), _input_to_forget_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_forget_reduction->configure(compile_context, recurrent_to_forget_weights->info(), _recurrent_to_forget_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false,
-qoutput_state_in.offset, true));
_input_to_cell_reduction->configure(compile_context, input_to_cell_weights->info(), _input_to_cell_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_cell_reduction->configure(compile_context, recurrent_to_cell_weights->info(), _recurrent_to_cell_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset,
true));
_input_to_output_reduction->configure(compile_context, input_to_output_weights->info(), _input_to_output_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true));
_recurrent_to_output_reduction->configure(compile_context, recurrent_to_output_weights->info(), _recurrent_to_output_eff_bias.info(), GEMMLowpReductionKernelInfo(num_units, false,
-qoutput_state_in.offset, true));
if(_has_projection)
{
_projection_reduction->configure(compile_context, _projection_weights->info(), _projection_eff_bias.info(), GEMMLowpReductionKernelInfo(output_size, false, lstm_params.hidden_state_zero(), true));
if(_projection_bias != nullptr)
{
_projection_bias_add.configure(compile_context, _projection_bias, &_projection_eff_bias, &_projection_eff_bias, ConvertPolicy::SATURATE);
}
}
// Pre-transpose weights to be used in GEMM.
_transpose_input_to_forget_weights.configure(compile_context, input_to_forget_weights, &_input_to_forget_weights_transposed);
_transpose_input_to_cell_weights.configure(compile_context, input_to_cell_weights, &_input_to_cell_weights_transposed);
_transpose_input_to_output_weights.configure(compile_context, input_to_output_weights, &_input_to_output_weights_transposed);
_transpose_recurrent_to_forget_weights.configure(compile_context, recurrent_to_forget_weights, &_recurrent_to_forget_weights_transposed);
_transpose_recurrent_to_cell_weights.configure(compile_context, recurrent_to_cell_weights, &_recurrent_to_cell_weights_transposed);
_transpose_recurrent_to_output_weights.configure(compile_context, recurrent_to_output_weights, &_recurrent_to_output_weights_transposed);
if(!_has_cifg)
{
_transpose_input_to_input_weights.configure(compile_context, lstm_params.input_to_input_weights(), &_input_to_input_weights_transposed);
_transpose_recurrent_to_input_weights.configure(compile_context, lstm_params.recurrent_to_input_weights(), &_recurrent_to_input_weights_transposed);
}
if(_has_projection)
{
_transpose_projection_weights.configure(compile_context, _projection_weights, &_projection_weights_transposed);
}
GEMMLowpOutputStageInfo gemmlowp_info;
gemmlowp_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int16_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int16_t>::max();
gemmlowp_info.output_data_type = DataType::QSYMM16;
const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32);
// Forget gate.
const TensorInfo forget_gate_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0));
const float input_to_forget_scale = input_to_forget_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.forget_intermediate_scale();
configure_mm(compile_context, _mm_input_to_forget, _input_to_forget_outstage, gemmlowp_info,
input, &_input_to_forget_weights_transposed, &_input_to_forget_eff_bias,
&_mm_input_to_forget_res, &_input_to_forget_outstage_res, input_to_forget_scale,
mm_out_info, forget_gate_outstage_info);
const float recurrent_to_forget_scale = recurrent_to_forget_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.forget_intermediate_scale();
configure_mm(compile_context, _mm_recurrent_to_forget, _recurrent_to_forget_outstage, gemmlowp_info,
output_state_in, &_recurrent_to_forget_weights_transposed, &_recurrent_to_forget_eff_bias,
&_mm_recurrent_to_forget_res, &_recurrent_to_forget_outstage_res, recurrent_to_forget_scale,
mm_out_info, forget_gate_outstage_info);
_accumulate_input_recurrent_forget.configure(compile_context, &_input_to_forget_outstage_res, &_recurrent_to_forget_outstage_res, &_recurrent_to_forget_outstage_res,
ConvertPolicy::SATURATE);
_input_to_forget_outstage_res.allocator()->allocate();
if(_has_peephole)
{
_mul_cell_to_forget_res.allocator()->init(TensorInfo(cell_state_in->info()->tensor_shape(), 1, DataType::S32));
_memory_group.manage(&_mul_cell_to_forget_res);
_pixelwise_mul_cell_to_forget.configure(compile_context, cell_state_in, lstm_params.cell_to_forget_weights(), &_mul_cell_to_forget_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_cell_to_forget_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_forget_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0)));
_memory_group.manage(&_cell_to_forget_outstage_res);
const float cell_to_forget_scale = std::pow(2, cell_shift) * lstm_params.cell_to_forget_weights()->info()->quantization_info().uniform().scale / lstm_params.forget_intermediate_scale();
quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
_cell_to_forget_outstage.configure(compile_context, &_mul_cell_to_forget_res, nullptr, &_cell_to_forget_outstage_res, gemmlowp_info);
_mul_cell_to_forget_res.allocator()->allocate();
_accumulate_cell_forget.configure(compile_context, &_recurrent_to_forget_outstage_res, &_cell_to_forget_outstage_res, &_recurrent_to_forget_outstage_res,
ConvertPolicy::SATURATE);
_cell_to_forget_outstage_res.allocator()->allocate();
}
CLTensor *forget_activation_input = &_recurrent_to_forget_outstage_res;
if(_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Forget, &_recurrent_to_forget_outstage_res);
_recurrent_to_forget_outstage_res.allocator()->allocate();
forget_activation_input = &get_layer_norm_output(LayerNormGate::Forget);
}
// Output quantization info of Sigmoid and Tanh activations
const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0);
const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_memory_group.manage(&_forget_gate);
_forget_gate.allocator()->init(forget_gate_info);
_forget_gate_sigmoid.configure(compile_context, forget_activation_input, &_forget_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
forget_activation_input->allocator()->allocate();
// Modulation gate.
const TensorInfo cell_outstage_info(mm_out_info.tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.cell_intermediate_scale(), 0));
const float input_to_cell_scale = input_to_cell_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.cell_intermediate_scale();
configure_mm(compile_context, _mm_input_to_cell, _input_to_cell_outstage, gemmlowp_info,
input, &_input_to_cell_weights_transposed, &_input_to_cell_eff_bias,
&_mm_input_to_cell_res, &_input_to_cell_outstage_res, input_to_cell_scale,
mm_out_info, cell_outstage_info);
const float recurrent_to_cell_scale = recurrent_to_cell_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.cell_intermediate_scale();
configure_mm(compile_context, _mm_recurrent_to_cell, _recurrent_to_cell_outstage, gemmlowp_info,
output_state_in, &_recurrent_to_cell_weights_transposed, &_recurrent_to_cell_eff_bias,
&_mm_recurrent_to_cell_res, &_recurrent_to_cell_outstage_res, recurrent_to_cell_scale,
mm_out_info, cell_outstage_info);
_accumulate_input_recurrent_modulation.configure(compile_context, &_input_to_cell_outstage_res, &_recurrent_to_cell_outstage_res, &_recurrent_to_cell_outstage_res,
ConvertPolicy::SATURATE);
_input_to_cell_outstage_res.allocator()->allocate();
CLTensor *cell_activation_input = &_recurrent_to_cell_outstage_res;
if(_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Cell, &_recurrent_to_cell_outstage_res);
_recurrent_to_cell_outstage_res.allocator()->allocate();
cell_activation_input = &get_layer_norm_output(LayerNormGate::Cell);
}
const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_memory_group.manage(&_cell_gate);
_cell_gate.allocator()->init(cell_gate_info);
_cell_gate_tanh.configure(compile_context, cell_activation_input, &_cell_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
cell_activation_input->allocator()->allocate();
// Input gate.
const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_input_gate.allocator()->init(input_gate_info);
_memory_group.manage(&_input_gate);
if(_has_cifg)
{
_ones.allocator()->init(*_forget_gate.info());
_input_gate_sub.configure(compile_context, &_ones, &_forget_gate, &_input_gate, ConvertPolicy::SATURATE);
_ones.allocator()->allocate();
}
else
{
const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0));
const float input_to_input_scale = _input_to_input_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.input_intermediate_scale();
configure_mm(compile_context, _mm_input_to_input, _input_to_input_outstage, gemmlowp_info,
input, &_input_to_input_weights_transposed, &_input_to_input_eff_bias,
&_mm_input_to_input_res, &_input_to_input_outstage_res, input_to_input_scale,
mm_out_info, input_outstage_info);
const float recurrent_to_input_scale = _recurrent_to_input_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.input_intermediate_scale();
configure_mm(compile_context, _mm_recurrent_to_input, _recurrent_to_input_outstage, gemmlowp_info,
output_state_in, &_recurrent_to_input_weights_transposed, &_recurrent_to_input_eff_bias,
&_mm_recurrent_to_input_res, &_recurrent_to_input_outstage_res, recurrent_to_input_scale,
mm_out_info, input_outstage_info);
_accumulate_input_recurrent_input.configure(compile_context, &_input_to_input_outstage_res, &_recurrent_to_input_outstage_res, &_recurrent_to_input_outstage_res,
ConvertPolicy::SATURATE);
_input_to_input_outstage_res.allocator()->allocate();
if(_has_peephole)
{
_mul_cell_to_input_res.allocator()->init(TensorInfo(cell_state_in->info()->tensor_shape(), 1, DataType::S32));
_memory_group.manage(&_mul_cell_to_input_res);
_pixelwise_mul_cell_to_input.configure(compile_context, cell_state_in, lstm_params.cell_to_input_weights(), &_mul_cell_to_input_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
const float cell_to_input_scale = std::pow(2, cell_shift) * lstm_params.cell_to_input_weights()->info()->quantization_info().uniform().scale / lstm_params.input_intermediate_scale();
quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
_cell_to_input_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_input_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0)));
_memory_group.manage(&_cell_to_input_outstage_res);
_cell_to_input_outstage.configure(compile_context, &_mul_cell_to_input_res, nullptr, &_cell_to_input_outstage_res, gemmlowp_info);
_mul_cell_to_input_res.allocator()->allocate();
_accumulate_cell_input.configure(&_recurrent_to_input_outstage_res, &_cell_to_input_outstage_res, &_recurrent_to_input_outstage_res, ConvertPolicy::SATURATE);
_cell_to_input_outstage_res.allocator()->allocate();
}
CLTensor *input_activation_input = &_recurrent_to_input_outstage_res;
if(_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Input, &_recurrent_to_input_outstage_res);
_recurrent_to_input_outstage_res.allocator()->allocate();
input_activation_input = &get_layer_norm_output(LayerNormGate::Input);
}
_input_gate_sigmoid.configure(compile_context, input_activation_input, &_input_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
input_activation_input->allocator()->allocate();
}
// Cell.
// TODO(COMPMID-3396): Perform multiplication in the quantized domain in CLPixelWiseMultiplication
_pixelwise_mul_forget_cell.configure(compile_context, &_forget_gate, cell_state_in, &_forget_gate, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
const float cell_gate_scale = _cell_gate.info()->quantization_info().uniform().scale;
const float mul_input_cell_scale = cell_gate_scale * std::pow(2, 15 + cell_shift);
const TensorInfo mul_input_cell_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(mul_input_cell_scale, 0));
_memory_group.manage(&_mul_input_cell_res);
_mul_input_cell_res.allocator()->init(mul_input_cell_info);
_pixelwise_mul_input_cell.configure(compile_context, &_input_gate, &_cell_gate, &_mul_input_cell_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_cell_gate.allocator()->allocate();
_add_forget_cell.configure(compile_context, &_forget_gate, &_mul_input_cell_res, cell_state_out, ConvertPolicy::SATURATE);
_mul_input_cell_res.allocator()->allocate();
_forget_gate.allocator()->allocate();
if(_has_cell_clipping)
{
_cell_clip.configure(compile_context, cell_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_cell_clip, quantized_cell_clip));
}
// Output gate.
const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0));
const float input_to_output_scale = input_to_output_weights->info()->quantization_info().uniform().scale * qinput.scale / lstm_params.output_intermediate_scale();
configure_mm(compile_context, _mm_input_to_output, _input_to_output_outstage, gemmlowp_info,
input, &_input_to_output_weights_transposed, &_input_to_output_eff_bias,
&_mm_input_to_output_res, &_input_to_output_outstage_res, input_to_output_scale,
mm_out_info, output_outstage_info);
const float recurrent_to_output_scale = recurrent_to_output_weights->info()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.output_intermediate_scale();
configure_mm(compile_context, _mm_recurrent_to_output, _recurrent_to_output_outstage, gemmlowp_info,
output_state_in, &_recurrent_to_output_weights_transposed, &_recurrent_to_output_eff_bias,
&_mm_recurrent_to_output_res, &_recurrent_to_output_outstage_res, recurrent_to_output_scale,
mm_out_info, output_outstage_info);
_accumulate_input_recurrent_output.configure(compile_context, &_recurrent_to_output_outstage_res, &_input_to_output_outstage_res, &_recurrent_to_output_outstage_res,
ConvertPolicy::SATURATE);
_input_to_output_outstage_res.allocator()->allocate();
if(_has_peephole)
{
// TODO(COMPMID-3396): Perform multiplication in the quantized domain in CLPixelWiseMultiplication
// Here we are not using the output stage because all operations are done in float
_mul_cell_to_output_res.allocator()->init(TensorInfo(cell_state_out->info()->tensor_shape(), 1, DataType::S32));
_memory_group.manage(&_mul_cell_to_output_res);
_pixelwise_mul_cell_to_output.configure(compile_context, cell_state_out, lstm_params.cell_to_output_weights(), &_mul_cell_to_output_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->info()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale();
quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift);
_cell_to_output_outstage_res.allocator()->init(TensorInfo(_mul_cell_to_output_res.info()->tensor_shape(), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0)));
_memory_group.manage(&_cell_to_output_outstage_res);
_cell_to_output_outstage.configure(compile_context, &_mul_cell_to_output_res, nullptr, &_cell_to_output_outstage_res, gemmlowp_info);
_mul_cell_to_output_res.allocator()->allocate();
_accumulate_cell_to_output.configure(compile_context, &_recurrent_to_output_outstage_res, &_cell_to_output_outstage_res, &_recurrent_to_output_outstage_res,
ConvertPolicy::SATURATE);
_cell_to_output_outstage_res.allocator()->allocate();
}
CLTensor *output_activation_input = &_recurrent_to_output_outstage_res;
if(_has_layer_norm)
{
configure_layer_norm(LayerNormGate::Output, &_recurrent_to_output_outstage_res);
_recurrent_to_output_outstage_res.allocator()->allocate();
output_activation_input = &get_layer_norm_output(LayerNormGate::Output);
}
const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
_memory_group.manage(&_output_gate);
_output_gate.allocator()->init(output_gate_info);
_output_gate_sigmoid.configure(compile_context, output_activation_input, &_output_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
output_activation_input->allocator()->allocate();
// Hidden.
_hidden_tanh.configure(compile_context, cell_state_out, &_input_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f));
// TODO(COMPMID-3396): Perform multiplication in the quantized domain in CLPixelWiseMultiplication
_memory_group.manage(&_hidden_mul_res);
const TensorInfo hidden_mul_res(_input_gate.info()->tensor_shape(), 1, DataType::S32);
_hidden_mul_res.allocator()->init(hidden_mul_res);
_pixelwise_mul_hidden.configure(compile_context, &_output_gate, &_input_gate, &_hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_output_gate.allocator()->allocate();
_input_gate.allocator()->allocate();
const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true);
gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
gemmlowp_info.output_data_type = output_state_in->info()->data_type();
_projection_tensor_copy_required = (num_units != output_size);
ICLTensor *hidden_gate_result = output_state_out;
_memory_group.manage(&_hidden_gate);
if(_projection_tensor_copy_required)
{
_hidden_gate.allocator()->init(*output_state_out->info());
_hidden_gate.info()->set_tensor_shape(_hidden_mul_res.info()->tensor_shape());
hidden_gate_result = &_hidden_gate;
}
_hidden_outstage.configure(compile_context, &_hidden_mul_res, nullptr, hidden_gate_result, gemmlowp_info);
_hidden_mul_res.allocator()->allocate();
// Projection.
if(_has_projection)
{
const TensorInfo projection_outstage_info(*output_state_out->info());
const UniformQuantizationInfo qprojection = _projection_weights->info()->quantization_info().uniform();
const float projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale;
gemmlowp_info.gemmlowp_offset = qoutput_state_in.offset;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int8_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int8_t>::max();
gemmlowp_info.output_data_type = DataType::QASYMM8_SIGNED;
TensorInfo projection_mm_out_info{ mm_out_info };
projection_mm_out_info.set_tensor_shape(TensorShape(output_size, batch_size));
configure_mm(compile_context, _mm_projection, _projection_outstage, gemmlowp_info,
hidden_gate_result, &_projection_weights_transposed, &_projection_eff_bias,
&_mm_projection_res, &_projection_outstage_res, projection_scale,
projection_mm_out_info, projection_outstage_info);
ICLTensor *accumulate_destination = output_state_out;
if(_projection_tensor_copy_required)
{
_hidden_gate.allocator()->allocate();
_projection_accumulate_res.allocator()->init(*output_state_in->info());
_projection_accumulate_res.info()->set_tensor_shape(_projection_outstage_res.info()->tensor_shape());
_projection_output_to_accumulate_copy.configure(*output_state_in, _projection_accumulate_res);
accumulate_destination = &_projection_accumulate_res;
}
_accumulate_projection.configure(compile_context, &_projection_outstage_res, accumulate_destination, accumulate_destination, ConvertPolicy::SATURATE);
_projection_outstage_res.allocator()->allocate();
if(_projection_tensor_copy_required)
{
_projection_accumulate_to_output_copy.configure(_projection_accumulate_res, *output_state_out);
_projection_accumulate_res.allocator()->allocate();
}
int8_t quantized_projection_clip{ 0 };
if(lstm_params.projection_clip() > 0.0f)
{
quantized_projection_clip = utility::clamp<int8_t>(lstm_params.projection_clip() / qprojection.scale, -128, 127);
}
if(quantized_projection_clip > 0)
{
_projection_clip.configure(compile_context, output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_projection_clip,
quantized_projection_clip));
_has_projection_clipping = true;
}
}
else
{
if(_projection_tensor_copy_required)
{
_hidden_to_output_copy.configure(_hidden_gate, *output_state_out);
_hidden_gate.allocator()->allocate();
}
}
// Copy output_state_out to output
_copy_output.configure(compile_context, output_state_out, output);
}
Status CLQLSTMLayer::validate(const ITensorInfo *input,
const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
const ITensorInfo *cell_state_in, const ITensorInfo *output_state_in,
const ITensorInfo *cell_state_out, const ITensorInfo *output_state_out, const ITensorInfo *output,
const LSTMParams<ITensorInfo> &lstm_params)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights,
recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, cell_state_in, output_state_in,
cell_state_out, output_state_out, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input->num_dimensions() != 2, "Input must have exactly 2 dimensions");
const unsigned int input_size = input->dimension(0);
const unsigned int batch_size = input->dimension(1);
const unsigned int num_units = input_to_output_weights->dimension(1);
const unsigned int output_size = output_state_out->dimension(_out_state_output_size_dimension_idx);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->dimension(0) != input_size);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_output_weights, input_to_forget_weights, input_to_cell_weights);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->dimension(1) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_to_forget_weights, 1, DataType::QSYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights);
ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() != 1);
ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->dimension(0) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, cell_bias, output_gate_bias);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(forget_gate_bias, 1, DataType::S32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, cell_bias, output_gate_bias);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(0) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->dimension(1) != batch_size);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(cell_state_in, 1, DataType::QSYMM16);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() != 2);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(0) != output_size);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->dimension(1) != batch_size);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_in);
// Check whether peephole weights are all there or none
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1, DataType::QSYMM16);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() != 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->dimension(0) != num_units);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_output_weights());
if(!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(lstm_params.cell_to_forget_weights(), lstm_params.cell_to_input_weights());
}
}
const UniformQuantizationInfo qinput = input->quantization_info().uniform();
const UniformQuantizationInfo qcell_state_in = cell_state_in->quantization_info().uniform();
const UniformQuantizationInfo qoutput_state_in = output_state_in->quantization_info().uniform();
// Calculate and decompose effective scales for optimizing matmul calculation
const int32_t cell_shift = log2(qcell_state_in.scale);
ARM_COMPUTE_RETURN_ERROR_ON(cell_shift > -9);
// Calculate quantized parameters for clipping.
int16_t quantized_cell_clip = 0;
if(lstm_params.cell_clip() > 0.0f)
{
quantized_cell_clip = quantize_qsymm16(lstm_params.cell_clip(), qcell_state_in);
}
// Precompute effective bias for optimizing the matmul computations.
const TensorInfo eff_bias_info(TensorShape(num_units), 1, DataType::S32);
const TensorInfo projection_eff_bias_info(TensorShape(output_size), 1, DataType::S32);
if(!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(lstm_params.input_to_input_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(lstm_params.recurrent_to_input_weights(), &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset,
true)));
}
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(input_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(recurrent_to_forget_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(input_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(recurrent_to_cell_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(input_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qinput.offset, true)));
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(recurrent_to_output_weights, &eff_bias_info, GEMMLowpReductionKernelInfo(num_units, false, -qoutput_state_in.offset, true)));
if(lstm_params.has_projection())
{
ARM_COMPUTE_RETURN_ON_ERROR(ClGemmLowpMatrixAReductionKernel::validate(lstm_params.projection_weights(), &projection_eff_bias_info, GEMMLowpReductionKernelInfo(output_size, false,
lstm_params.hidden_state_zero(),
true)));
if(lstm_params.projection_bias() != nullptr)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.projection_bias(), 1, DataType::S32);
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(lstm_params.projection_bias(), &projection_eff_bias_info,
&projection_eff_bias_info, ConvertPolicy::SATURATE));
}
}
const TensorInfo input_weights_transposed(TensorShape(num_units, input_size), 1, input_to_forget_weights->data_type(), input_to_forget_weights->quantization_info());
const TensorInfo recurrent_weights_transposed(TensorShape(num_units, output_size), 1, recurrent_to_forget_weights->data_type(), recurrent_to_forget_weights->quantization_info());
// Validate weights transpose
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(input_to_forget_weights, &input_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(input_to_cell_weights, &input_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(input_to_output_weights, &input_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(recurrent_to_forget_weights, &recurrent_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(recurrent_to_cell_weights, &recurrent_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(recurrent_to_output_weights, &recurrent_weights_transposed));
if(!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(lstm_params.input_to_input_weights(), &input_weights_transposed));
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(lstm_params.recurrent_to_input_weights(), &recurrent_weights_transposed));
}
if(lstm_params.has_projection())
{
const TensorInfo projection_weights_transposed(TensorShape(output_size, num_units), 1, lstm_params.projection_weights()->data_type(), lstm_params.projection_weights()->quantization_info());
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(lstm_params.projection_weights(), &projection_weights_transposed));
}
GEMMLowpOutputStageInfo gemmlowp_info;
gemmlowp_info.type = GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int16_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int16_t>::max();
gemmlowp_info.output_data_type = DataType::QSYMM16;
const bool has_layer_norm = lstm_params.use_layer_norm();
// Forget gate.
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.forget_intermediate_scale() == 0);
const TensorInfo forget_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.forget_intermediate_scale(), 0));
const TensorInfo mm_out_info(TensorShape(num_units, batch_size), 1, DataType::S32);
const float input_to_forget_scale = input_to_forget_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.forget_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_forget_scale, &mm_out_info, &forget_outstage_info));
const float recurrent_to_forget_scale = recurrent_to_forget_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.forget_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_forget_scale, &mm_out_info, &forget_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&forget_outstage_info, &forget_outstage_info, &forget_outstage_info, ConvertPolicy::SATURATE));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_forget_weights(), 1, DataType::QSYMM16);
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(cell_state_in, lstm_params.cell_to_forget_weights(), &mm_out_info, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
const float cell_to_forget_scale = std::pow(2, cell_shift) * lstm_params.cell_to_forget_weights()->quantization_info().uniform().scale / lstm_params.forget_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_forget_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&mm_out_info, nullptr, &forget_outstage_info, gemmlowp_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&forget_outstage_info, &forget_outstage_info, &forget_outstage_info, ConvertPolicy::SATURATE));
}
if(has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.forget_layer_norm_weights();
const ITensorInfo *b_info = forget_gate_bias;
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(forget_outstage_info, *w_info, *b_info));
}
// Output quantization info of Sigmoid and Tanh activations
const QuantizationInfo sigmoid_tanh_outqinfo(1.f / 32768.f, 0);
const TensorInfo forget_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&forget_outstage_info, &forget_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Modulation gate.
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_intermediate_scale() == 0);
const TensorInfo cell_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.cell_intermediate_scale(), 0));
const float input_to_cell_scale = input_to_cell_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.cell_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_cell_scale, &mm_out_info, &cell_outstage_info));
const float recurrent_to_cell_scale = recurrent_to_cell_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.cell_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &input_weights_transposed, &eff_bias_info, recurrent_to_cell_scale, &mm_out_info, &cell_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&cell_outstage_info, &cell_outstage_info, &cell_outstage_info, ConvertPolicy::SATURATE));
if(has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.cell_layer_norm_weights();
const ITensorInfo *b_info = cell_bias;
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(cell_outstage_info, *w_info, *b_info));
}
const TensorInfo cell_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&cell_outstage_info, &cell_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
// Input gate.
const TensorInfo input_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
if(lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(lstm_params.input_gate_bias() != nullptr, "Input gate bias must not be present when CIFG is used");
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticSubtraction::validate(&input_gate_info, &forget_gate_info, &forget_gate_info, ConvertPolicy::SATURATE));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights(), lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_to_forget_weights, lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input_to_forget_weights, lstm_params.input_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(recurrent_to_forget_weights, lstm_params.recurrent_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(forget_gate_bias, lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(forget_gate_bias, lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_intermediate_scale() == 0);
const TensorInfo input_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.input_intermediate_scale(), 0));
const float input_to_input_scale = lstm_params.input_to_input_weights()->quantization_info().uniform().scale * qinput.scale / lstm_params.input_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_input_scale, &mm_out_info, &input_outstage_info));
const float recurrent_to_input_scale = lstm_params.recurrent_to_input_weights()->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.input_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_input_scale, &mm_out_info, &input_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&input_outstage_info, &input_outstage_info, &input_outstage_info, ConvertPolicy::SATURATE));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(cell_state_in, lstm_params.cell_to_input_weights(), &mm_out_info, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
const float cell_to_input_scale = std::pow(2, cell_shift) * lstm_params.cell_to_input_weights()->quantization_info().uniform().scale / lstm_params.input_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_input_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&mm_out_info, &eff_bias_info, &input_outstage_info, gemmlowp_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&input_outstage_info, &input_outstage_info, &input_outstage_info, ConvertPolicy::SATURATE));
}
if(has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.input_layer_norm_weights();
const ITensorInfo *b_info = lstm_params.input_gate_bias();
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(cell_outstage_info, *w_info, *b_info));
}
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&input_outstage_info, &input_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC, 1.f, 1.f)));
}
// Cell.
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(&forget_gate_info, cell_state_in, &forget_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(&input_gate_info, cell_state_in, &cell_gate_info, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&forget_gate_info, &cell_gate_info, cell_state_out, ConvertPolicy::SATURATE));
if(quantized_cell_clip > 0)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(cell_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_cell_clip,
quantized_cell_clip)));
}
// Output gate.
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.output_intermediate_scale() == 0);
const TensorInfo output_outstage_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, QuantizationInfo(lstm_params.output_intermediate_scale(), 0));
const float input_to_output_scale = input_to_output_weights->quantization_info().uniform().scale * qinput.scale / lstm_params.output_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, input, &input_weights_transposed, &eff_bias_info, input_to_output_scale, &mm_out_info, &output_outstage_info));
const float recurrent_to_output_scale = recurrent_to_output_weights->quantization_info().uniform().scale * qoutput_state_in.scale / lstm_params.output_intermediate_scale();
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, output_state_in, &recurrent_weights_transposed, &eff_bias_info, recurrent_to_output_scale, &mm_out_info, &output_outstage_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&output_outstage_info, &output_outstage_info, &output_outstage_info, ConvertPolicy::SATURATE));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(lstm_params.cell_to_output_weights(), 1, DataType::QSYMM16);
// TODO(COMPMID-3395): Perform multiplication in the quantized domain in NEPixelWiseMultiplicationKernel
// Here we are not using the output stage because all operations are done in float
// const float cell_to_output_scale = std::pow(2, cell_shift) * lstm_params.cell_to_output_weights()->quantization_info().uniform().scale / lstm_params.output_intermediate_scale();
// ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(cell_to_output_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(cell_state_out, lstm_params.cell_to_output_weights(), &output_outstage_info, 1.f, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(&output_outstage_info, &output_outstage_info, &output_outstage_info, ConvertPolicy::SATURATE));
}
if(has_layer_norm)
{
const ITensorInfo *w_info = lstm_params.output_layer_norm_weights();
const ITensorInfo *b_info = output_gate_bias;
ARM_COMPUTE_RETURN_ON_ERROR(validate_layer_norm(output_outstage_info, *w_info, *b_info));
}
const TensorInfo output_gate_info(TensorShape(num_units, batch_size), 1, DataType::QSYMM16, sigmoid_tanh_outqinfo);
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(&output_outstage_info, &output_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Hidden.
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(cell_state_out, &input_gate_info, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH, 1.f, 1.f)));
const TensorInfo hidden_mul_res(TensorShape(num_units, batch_size), 1, DataType::S32);
const TensorInfo hidden_out_info(TensorShape(num_units, batch_size), 1, DataType::QASYMM8_SIGNED);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.hidden_state_scale() == 0);
ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplication::validate(&output_gate_info, &input_gate_info, &hidden_mul_res, 1.f, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
const float hidden_state_scale = std::pow(2, -15) / lstm_params.hidden_state_scale() * std::pow(2, -15);
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(hidden_state_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift, /* ignore_epsilon */ true));
gemmlowp_info.gemmlowp_offset = lstm_params.hidden_state_zero();
gemmlowp_info.output_data_type = hidden_out_info.data_type();
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpOutputStage::validate(&hidden_mul_res, nullptr, &hidden_out_info, gemmlowp_info));
const bool projection_tensor_copy_required = num_units != output_size;
// Projection.
if(lstm_params.has_projection())
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(recurrent_to_forget_weights, lstm_params.projection_weights());
ARM_COMPUTE_RETURN_ERROR_ON(qoutput_state_in.scale == 0);
const UniformQuantizationInfo qprojection = lstm_params.projection_weights()->quantization_info().uniform();
const float projection_scale = qprojection.scale * lstm_params.hidden_state_scale() / qoutput_state_in.scale;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier(projection_scale, &gemmlowp_info.gemmlowp_multiplier, &gemmlowp_info.gemmlowp_shift));
gemmlowp_info.gemmlowp_offset = qoutput_state_in.offset;
gemmlowp_info.gemmlowp_min_bound = std::numeric_limits<int8_t>::lowest();
gemmlowp_info.gemmlowp_max_bound = std::numeric_limits<int8_t>::max();
gemmlowp_info.output_data_type = DataType::QASYMM8_SIGNED;
const TensorInfo projection_outstage_info(*output_state_out);
const TensorInfo projection_weights_transposed(TensorShape(output_size, num_units), 1, lstm_params.projection_weights()->data_type(), lstm_params.projection_weights()->quantization_info());
TensorInfo projection_mm_out_info{ mm_out_info };
projection_mm_out_info.set_tensor_shape(TensorShape(output_size, batch_size));
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(gemmlowp_info, &hidden_out_info, &projection_weights_transposed, &projection_eff_bias_info, projection_scale, &projection_mm_out_info,
&projection_outstage_info));
if(projection_tensor_copy_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLQLSTMLayer::TensorCopyKernel::validate(*output_state_in, projection_outstage_info));
}
ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(output_state_out, output_state_out, output_state_out, ConvertPolicy::SATURATE));
if(projection_tensor_copy_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLQLSTMLayer::TensorCopyKernel::validate(projection_outstage_info, *output_state_out));
}
int8_t quantized_projection_clip{ 0 };
if(lstm_params.projection_clip() > 0.0f)
{
quantized_projection_clip = quantize_qasymm8_signed(lstm_params.projection_clip(), qprojection);
}
if(quantized_projection_clip > 0)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -quantized_projection_clip,
quantized_projection_clip)));
}
}
else
{
if(projection_tensor_copy_required)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLQLSTMLayer::TensorCopyKernel::validate(hidden_out_info, *output_state_out));
}
}
if(cell_state_out->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(cell_state_in, cell_state_out);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(cell_state_in, cell_state_out);
}
if(output_state_out->total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output_state_out);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(output_state_in, output_state_out);
}
ARM_COMPUTE_RETURN_ON_ERROR(CLCopy::validate(output_state_out, output));
return Status{};
}
void CLQLSTMLayer::run()
{
prepare();
// Acquire all the temporaries
MemoryGroupResourceScope scope_mg(_memory_group);
// Forget gate.
_mm_input_to_forget.run();
_input_to_forget_outstage.run();
_mm_recurrent_to_forget.run();
_recurrent_to_forget_outstage.run();
_accumulate_input_recurrent_forget.run();
if(_has_peephole)
{
_pixelwise_mul_cell_to_forget.run();
_cell_to_forget_outstage.run();
_accumulate_cell_forget.run();
}
if(_has_layer_norm)
{
CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Forget));
}
_forget_gate_sigmoid.run();
// Modulation gate.
_mm_input_to_cell.run();
_input_to_cell_outstage.run();
_mm_recurrent_to_cell.run();
_recurrent_to_cell_outstage.run();
_accumulate_input_recurrent_modulation.run();
if(_has_layer_norm)
{
CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Cell));
}
_cell_gate_tanh.run();
// Input gate
if(_has_cifg)
{
_input_gate_sub.run();
}
else
{
_mm_input_to_input.run();
_input_to_input_outstage.run();
_mm_recurrent_to_input.run();
_recurrent_to_input_outstage.run();
_accumulate_input_recurrent_input.run();
if(_has_peephole)
{
_pixelwise_mul_cell_to_input.run();
_cell_to_input_outstage.run();
_accumulate_cell_input.run();
}
if(_has_layer_norm)
{
CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Input));
}
_input_gate_sigmoid.run();
}
// Cell.
_pixelwise_mul_forget_cell.run();
_pixelwise_mul_input_cell.run();
_add_forget_cell.run();
if(_has_cell_clipping)
{
_cell_clip.run();
}
// Output gate.
_mm_input_to_output.run();
_input_to_output_outstage.run();
_mm_recurrent_to_output.run();
_recurrent_to_output_outstage.run();
_accumulate_input_recurrent_output.run();
if(_has_peephole)
{
_pixelwise_mul_cell_to_output.run();
_cell_to_output_outstage.run();
_accumulate_cell_to_output.run();
}
if(_has_layer_norm)
{
CLScheduler::get().enqueue(get_layer_norm(LayerNormGate::Output));
}
_output_gate_sigmoid.run();
// Hidden.
_hidden_tanh.run();
_pixelwise_mul_hidden.run();
_hidden_outstage.run();
// Projection.
if(_has_projection)
{
_mm_projection.run();
_projection_outstage.run();
if(_projection_tensor_copy_required)
{
_projection_output_to_accumulate_copy.run();
}
_accumulate_projection.run();
if(_projection_tensor_copy_required)
{
_projection_accumulate_to_output_copy.run();
}
if(_has_projection_clipping)
{
_projection_clip.run();
}
}
else
{
if(_projection_tensor_copy_required)
{
_hidden_to_output_copy.run();
}
}
// Copy output_state_out to output
_copy_output.run();
}
void CLQLSTMLayer::prepare()
{
if(!_is_prepared)
{
// Pre-transpose weights to be used in GEMM.
_input_to_forget_weights_transposed.allocator()->allocate();
_input_to_cell_weights_transposed.allocator()->allocate();
_input_to_output_weights_transposed.allocator()->allocate();
_recurrent_to_forget_weights_transposed.allocator()->allocate();
_recurrent_to_cell_weights_transposed.allocator()->allocate();
_recurrent_to_output_weights_transposed.allocator()->allocate();
_transpose_input_to_forget_weights.run();
_transpose_input_to_cell_weights.run();
_transpose_input_to_output_weights.run();
_transpose_recurrent_to_forget_weights.run();
_transpose_recurrent_to_cell_weights.run();
_transpose_recurrent_to_output_weights.run();
// Precompute effective biases
if(_has_cifg)
{
_ones.map(true);
std::fill_n(reinterpret_cast<int16_t *>(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 32767);
_ones.unmap();
}
else
{
_input_to_input_eff_bias.allocator()->allocate();
_recurrent_to_input_eff_bias.allocator()->allocate();
ITensorPack input_to_input_red_pack = { { ACL_SRC, _input_to_input_weights }, { ACL_DST, &_input_to_input_eff_bias } };
CLScheduler::get().enqueue_op(*_input_to_input_reduction, input_to_input_red_pack, false);
ITensorPack rec_to_input_red_pack = { { ACL_SRC, _recurrent_to_input_weights }, { ACL_DST, &_recurrent_to_input_eff_bias } };
CLScheduler::get().enqueue_op(*_recurrent_to_input_reduction, rec_to_input_red_pack, false);
_input_to_input_weights_transposed.allocator()->allocate();
_recurrent_to_input_weights_transposed.allocator()->allocate();
_transpose_input_to_input_weights.run();
_transpose_recurrent_to_input_weights.run();
_input_to_input_weights->mark_as_unused();
_recurrent_to_input_weights->mark_as_unused();
}
_input_to_forget_eff_bias.allocator()->allocate();
_recurrent_to_forget_eff_bias.allocator()->allocate();
_input_to_cell_eff_bias.allocator()->allocate();
_recurrent_to_cell_eff_bias.allocator()->allocate();
_input_to_output_eff_bias.allocator()->allocate();
_recurrent_to_output_eff_bias.allocator()->allocate();
ITensorPack input_to_forget_red_pack = { { ACL_SRC, _input_to_forget_weights }, { ACL_DST, &_input_to_forget_eff_bias } };
CLScheduler::get().enqueue_op(*_input_to_forget_reduction, input_to_forget_red_pack, false);
ITensorPack rec_to_forget_red_pack = { { ACL_SRC, _recurrent_to_forget_weights }, { ACL_DST, &_recurrent_to_forget_eff_bias } };
CLScheduler::get().enqueue_op(*_recurrent_to_forget_reduction, rec_to_forget_red_pack, false);
ITensorPack input_to_cell_red_pack = { { ACL_SRC, _input_to_cell_weights }, { ACL_DST, &_input_to_cell_eff_bias } };
CLScheduler::get().enqueue_op(*_input_to_cell_reduction, input_to_cell_red_pack, false);
ITensorPack rec_to_cell_red_pack = { { ACL_SRC, _recurrent_to_cell_weights }, { ACL_DST, &_recurrent_to_cell_eff_bias } };
CLScheduler::get().enqueue_op(*_recurrent_to_cell_reduction, rec_to_cell_red_pack, false);
ITensorPack input_to_output_red_pack = { { ACL_SRC, _input_to_output_weights }, { ACL_DST, &_input_to_output_eff_bias } };
CLScheduler::get().enqueue_op(*_input_to_output_reduction, input_to_output_red_pack, false);
ITensorPack rec_to_output_red_pack = { { ACL_SRC, _recurrent_to_output_weights }, { ACL_DST, &_recurrent_to_output_eff_bias } };
CLScheduler::get().enqueue_op(*_recurrent_to_output_reduction, rec_to_output_red_pack, false);
if(_has_projection)
{
_projection_eff_bias.allocator()->allocate();
ITensorPack proj_red_pack{ { ACL_SRC, _projection_weights }, { ACL_DST, &_projection_eff_bias } };
CLScheduler::get().enqueue_op(*_projection_reduction, proj_red_pack, false);
if(_projection_bias != nullptr)
{
_projection_bias_add.run();
_projection_bias->mark_as_unused();
}
_projection_weights_transposed.allocator()->allocate();
_transpose_projection_weights.run();
_projection_weights->mark_as_unused();
if(!_projection_tensor_copy_required)
{
_hidden_gate.mark_as_unused();
_projection_accumulate_res.mark_as_unused();
}
}
// Mark weights as unused
_input_to_forget_weights->mark_as_unused();
_input_to_cell_weights->mark_as_unused();
_input_to_output_weights->mark_as_unused();
_recurrent_to_forget_weights->mark_as_unused();
_recurrent_to_cell_weights->mark_as_unused();
_recurrent_to_output_weights->mark_as_unused();
CLScheduler::get().queue().finish();
_is_prepared = true;
}
}
} // namespace arm_compute