blob: 74d040b81d837213e7acf4c3612cb38246e3a334 [file] [log] [blame]
/*
* Copyright (c) 2019-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/mutators/SyntheticDataTypeMutator.h"
#include "arm_compute/graph/GraphBuilder.h"
#include "arm_compute/graph/ITensorAccessor.h"
#include "arm_compute/graph/Logger.h"
#include "arm_compute/graph/Utils.h"
#include "arm_compute/graph/nodes/Nodes.h"
#include "support/Cast.h"
#include <set>
namespace arm_compute
{
namespace graph
{
namespace
{
/** Empty accessor class */
class EmptyAccessor final : public graph::ITensorAccessor
{
public:
/** Default Constructor */
EmptyAccessor() = default;
// Inherited methods overriden:
bool access_tensor(ITensor &tensor) override
{
ARM_COMPUTE_UNUSED(tensor);
return true;
}
};
/** Check if the mutation pass can be applied
*
* @param[in] g Graph the mutation pass need to be applied on
*
* @return True if the pass can be applied else false
*/
bool is_mutation_supported(Graph &g)
{
const std::set<NodeType> unsupported_node_types = { NodeType::DetectionOutputLayer,
NodeType::NormalizationLayer,
NodeType::PriorBoxLayer
};
for(const auto &utype : unsupported_node_types)
{
if(!g.nodes(utype).empty())
{
return false;
}
}
return true;
}
/** Remove nodes that get optimized out during conversion
*
* @param[in, out] g Graph to remove the nodes from.
*/
void remove_optimized_nodes(Graph &g)
{
const std::set<NodeType> optimized_node_types = { NodeType::BatchNormalizationLayer };
for(const auto &opt_type : optimized_node_types)
{
const std::vector<NodeID> opt_nodes_ids = g.nodes(opt_type);
for(const auto &node_id : opt_nodes_ids)
{
INode *node = g.node(node_id);
// Get input edge
Edge *input_edge = node->input_edge(0);
ARM_COMPUTE_ERROR_ON(input_edge == nullptr);
// Get producer node
INode *producer = input_edge->producer();
const EdgeID producer_edge_id = input_edge->producer_idx();
ARM_COMPUTE_ERROR_ON(producer == nullptr);
// Get driving nodes
std::vector<NodeIdxPair> driving_nodes = get_driving_nodes(*node);
// Remove node
g.remove_node(node->id());
// Update connections
for(auto &driving_node : driving_nodes)
{
g.add_connection(producer->id(), producer_edge_id, driving_node.node_id, driving_node.index);
}
}
}
}
/** Convert tensor meta-data
*
* @param[in,out] g Graph to convert tensors of.
*/
void convert_tensors(Graph &g, DataType data_type)
{
auto &tensors = g.tensors();
for(auto &tensor : tensors)
{
if(tensor != nullptr)
{
switch(data_type)
{
case DataType::QASYMM8:
case DataType::QASYMM8_SIGNED:
{
tensor->desc().quant_info = QuantizationInfo(0.125f, -10);
break;
}
default:
{
ARM_COMPUTE_ERROR("Unsupported mutation type");
break;
}
}
tensor->desc().data_type = data_type;
}
}
}
/** Convert special node
*
* @param[in,out] g Graph to convert tensors of.
* @param[in] fnc Conversion function.
* @param[in] optional_arguments Conversion function arguments.
*/
template <typename NT>
void convert_special_node(Graph &g, std::function<bool(INode *, Tensor *)> const &f)
{
const std::vector<NodeID> nodes_ids = g.nodes(NT::node_type);
for(const auto &nodes_id : nodes_ids)
{
INode *node = arm_compute::utils::cast::polymorphic_downcast<NT *>(g.node(nodes_id));
ARM_COMPUTE_ERROR_ON(node == nullptr);
Tensor *output_tensor = node->output(0);
ARM_COMPUTE_ERROR_ON(output_tensor == nullptr);
f(node, output_tensor);
}
}
/** Converts special tensors
*
* @param[in,out] g Graph to convert tensors of.
*/
void convert_special_tensors(Graph &g)
{
auto softmax_func = [](INode * node, Tensor * tensor)
{
ARM_COMPUTE_UNUSED(node);
if(tensor->desc().data_type == DataType::QASYMM8)
{
tensor->desc().quant_info = QuantizationInfo(1.f / 256.f, 0);
}
else if(tensor->desc().data_type == DataType::QASYMM8_SIGNED)
{
tensor->desc().quant_info = QuantizationInfo(1.f / 256.f, -128);
}
return true;
};
auto act_func = [](INode * node, Tensor * tensor)
{
auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(node);
if(tensor->desc().data_type == DataType::QASYMM8)
{
if(act_node->activation_info().activation() == ActivationLayerInfo::ActivationFunction::TANH)
{
tensor->desc().quant_info = QuantizationInfo(1.f / 128.f, 128);
}
else if(act_node->activation_info().activation() == ActivationLayerInfo::ActivationFunction::LOGISTIC)
{
tensor->desc().quant_info = QuantizationInfo(1.f / 256.f, 0);
}
}
else if(tensor->desc().data_type == DataType::QASYMM8_SIGNED)
{
if(act_node->activation_info().activation() == ActivationLayerInfo::ActivationFunction::TANH)
{
tensor->desc().quant_info = QuantizationInfo(1.f / 128.f, 0);
}
else if(act_node->activation_info().activation() == ActivationLayerInfo::ActivationFunction::LOGISTIC)
{
tensor->desc().quant_info = QuantizationInfo(1.f / 256.f, -128);
}
}
return true;
};
convert_special_node<ActivationLayerNode>(g, act_func);
convert_special_node<SoftmaxLayerNode>(g, softmax_func);
}
/** Handle nodes with bias
*
* @note Special tensors are for now biases that the data type differ
*
* @param[in,out] g Graph to convert tensors of.
*/
void handle_nodes_with_bias(Graph &g)
{
const std::set<NodeType> special_node_types = { NodeType::ConvolutionLayer,
NodeType::DeconvolutionLayer,
NodeType::DepthwiseConvolutionLayer,
NodeType::FullyConnectedLayer
};
for(const auto &spc_type : special_node_types)
{
const std::vector<NodeID> scp_nodes_ids = g.nodes(spc_type);
for(const auto &node_id : scp_nodes_ids)
{
INode *node = g.node(node_id);
if(node != nullptr)
{
Tensor *tensor = node->input(2);
if(tensor != nullptr)
{
tensor->desc().data_type = DataType::S32;
}
else
{
auto params = node->common_node_params();
params.name = params.name.empty() ? "" : params.name + "Bias";
TensorDescriptor b_desc = node->input(1)->desc();
auto depth = b_desc.shape[get_dimension_idx(b_desc.layout, DataLayoutDimension::BATCHES)];
b_desc.shape = TensorShape(depth);
auto accessor = std::make_unique<EmptyAccessor>();
auto b_nid = GraphBuilder::add_const_node(g, params, b_desc, std::move(accessor));
g.add_connection(b_nid, 0, node_id, 2);
}
}
}
}
}
} // namespace
SyntheticDataTypeMutator::SyntheticDataTypeMutator(DataType mutate_type)
: _mutate_type{ mutate_type }
{
}
const char *SyntheticDataTypeMutator::name()
{
return "SyntheticDataTypeMutator";
}
IGraphMutator::MutationType SyntheticDataTypeMutator::type() const
{
return IGraphMutator::MutationType::IR;
}
void SyntheticDataTypeMutator::mutate(Graph &g)
{
if(is_mutation_supported(g))
{
// Remove nodes that get optimized out (e.g. BatchNorm)
remove_optimized_nodes(g);
// Convert tensor
convert_tensors(g, _mutate_type);
convert_special_tensors(g);
// Handle special nodes
handle_nodes_with_bias(g);
}
else
{
ARM_COMPUTE_LOG_GRAPH_VERBOSE("Synthetic data type mutator couldn't be applied" << std::endl);
}
}
} // namespace graph
} // namespace arm_compute