blob: 73bf7dcb8abb18ad97f68e749dd6435183fde0f6 [file] [log] [blame]
/*
* Copyright (c) 2021-2022 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/cpu/kernels/internal/CpuDepthwiseConv2dAssemblyWrapperKernel.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "src/core/CPP/Validate.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/WindowHelpers.h"
#include "src/core/utils/AssemblyUtils.h"
#include "src/core/NEON/kernels/assembly/depthwise.hpp"
#include "depthwise_common.hpp"
#include <arm_neon.h>
namespace arm_compute
{
namespace cpu
{
namespace kernels
{
using namespace arm_compute::misc::shape_calculator;
namespace
{
constexpr unsigned int idx_width = 1;
constexpr unsigned int idx_height = 2;
constexpr unsigned int idx_channels = 0;
constexpr unsigned int idx_batches = 3;
template <typename TSrc, typename TWeights, typename TDst>
void create_arm_dwc(const ITensorInfo *src, const ITensorInfo *weights, ITensorInfo *dst,
const ConvolutionInfo &info, const CPUInfo &cpu_info,
std::unique_ptr<arm_conv::depthwise::IDepthwiseCommon> &kernel, std::string &_name)
{
unsigned int stride_cols{};
unsigned int stride_rows{};
std::tie(stride_cols, stride_rows) = info.pad_stride_info.stride();
const arm_conv::PaddingValues padding = assembly_utils::map_to_arm_conv_padding(info.pad_stride_info);
const unsigned int n_batches = src->dimension(idx_batches);
const unsigned int src_rows = src->dimension(idx_height);
const unsigned int src_cols = src->dimension(idx_width);
const unsigned int n_channels = src->dimension(idx_channels);
const unsigned int dst_rows = dst->dimension(idx_height);
const unsigned int dst_cols = dst->dimension(idx_width);
const unsigned int kernel_cols = weights->dimension(idx_width);
const unsigned int kernel_rows = weights->dimension(idx_height);
const arm_gemm::Activation activation = assembly_utils::map_to_arm_gemm_activation(info.act_info);
arm_conv::depthwise::DepthwiseArgs args(&cpu_info, kernel_rows, kernel_cols, stride_rows, stride_cols,
n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, info.depth_multiplier,
padding, activation, nullptr);
// Configure assembly pooling kernel
auto dwc_kernel_asm = arm_conv::depthwise::depthwise<TSrc, TWeights, TDst>(args);
if(dwc_kernel_asm == nullptr)
{
// Configuration not supported: Leave function unconfigured:
return;
}
_name = dwc_kernel_asm->name();
kernel = std::move(dwc_kernel_asm);
}
template <typename TSrc, typename TWeights, typename TDst>
void create_arm_dwc_quant(const ITensorInfo *src, const ITensorInfo *weights, ITensorInfo *dst,
const ConvolutionInfo &info, const CPUInfo &cpu_info,
std::unique_ptr<arm_conv::depthwise::IDepthwiseCommon> &kernel,
std::vector<int32_t> &multipliers, std::vector<int32_t> &right_shifts, std::vector<int32_t> &left_shifts,
std::string &_name)
{
unsigned int stride_cols{};
unsigned int stride_rows{};
std::tie(stride_cols, stride_rows) = info.pad_stride_info.stride();
const arm_conv::PaddingValues padding = assembly_utils::map_to_arm_conv_padding(info.pad_stride_info);
const unsigned int n_batches = src->dimension(idx_batches);
const unsigned int src_rows = src->dimension(idx_height);
const unsigned int src_cols = src->dimension(idx_width);
const unsigned int n_channels = src->dimension(idx_channels);
const unsigned int dst_rows = dst->dimension(idx_height);
const unsigned int dst_cols = dst->dimension(idx_width);
const unsigned int kernel_cols = weights->dimension(idx_width);
const unsigned int kernel_rows = weights->dimension(idx_height);
const arm_gemm::Activation activation = assembly_utils::map_to_arm_gemm_activation(info.act_info);
arm_conv::depthwise::DepthwiseArgs args(&cpu_info, kernel_rows, kernel_cols, stride_rows, stride_cols,
n_batches, src_rows, src_cols, n_channels, dst_rows, dst_cols, info.depth_multiplier,
padding, activation, nullptr);
const auto src_qinfo = src->quantization_info().uniform();
const auto weights_qinfo = weights->quantization_info();
const auto dst_qinfo = dst->quantization_info().uniform();
const unsigned int num_filters = weights_qinfo.scale().size();
multipliers.resize(num_filters);
std::vector<int32_t> dst_shifts(num_filters);
quantization::compute_quantized_multipliers_and_shifts(src,
weights,
dst,
multipliers.data(),
dst_shifts.data());
// Quantize activation bounds
int32_t min_activation = std::numeric_limits<TSrc>::lowest();
int32_t max_activation = std::numeric_limits<TSrc>::max();
if(info.act_info.enabled())
{
std::tie(min_activation, max_activation) = get_quantized_activation_min_max(info.act_info, src->data_type(), dst_qinfo);
}
// Set quantization parameters for assembly kernels
arm_gemm::Requantize32 requant_args{};
if(is_data_type_quantized_per_channel(weights->data_type()))
{
left_shifts.resize(num_filters);
right_shifts.resize(num_filters);
bool need_left_shift = false; // Select more optimized path if left shift is not needed
for(unsigned int i = 0; i < num_filters; ++i)
{
left_shifts[i] = std::max(-dst_shifts[i], static_cast<int32_t>(0));
right_shifts[i] = std::min(-dst_shifts[i], static_cast<int32_t>(0));
if(dst_shifts[i] < 0 && !need_left_shift)
{
need_left_shift = true;
}
}
requant_args = arm_gemm::Requantize32(nullptr,
0,
src_qinfo.offset,
weights_qinfo.uniform().offset,
dst_qinfo.offset,
(need_left_shift) ? left_shifts.data() : nullptr,
right_shifts.data(),
multipliers.data(),
static_cast<TSrc>(min_activation),
static_cast<TSrc>(max_activation));
}
else
{
requant_args = arm_gemm::Requantize32(nullptr,
0,
src_qinfo.offset,
weights_qinfo.uniform().offset,
dst_qinfo.offset,
-dst_shifts[0],
multipliers[0],
static_cast<TSrc>(min_activation),
static_cast<TSrc>(max_activation));
}
// Configure assembly pooling kernel with requantization
auto dwc_kernel_asm = arm_conv::depthwise::depthwise<TSrc, TWeights, TDst, arm_gemm::Requantize32>(args, requant_args);
if(dwc_kernel_asm == nullptr)
{
// Configuration not supported: Leave function unconfigured:
return;
}
_name = dwc_kernel_asm->name();
kernel = std::move(dwc_kernel_asm);
}
} // namespace
CpuDepthwiseConv2dAssemblyWrapperKernel::CpuDepthwiseConv2dAssemblyWrapperKernel()
: _kernel_asm(nullptr),
_multipliers(),
_left_shifts(),
_right_shifts(),
_name()
{
}
CpuDepthwiseConv2dAssemblyWrapperKernel::~CpuDepthwiseConv2dAssemblyWrapperKernel() = default;
void CpuDepthwiseConv2dAssemblyWrapperKernel::configure(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *, ITensorInfo *dst,
const ConvolutionInfo &info, const CPUInfo &cpu_info)
{
ARM_COMPUTE_UNUSED(cpu_info);
ARM_COMPUTE_ERROR_ON_NULLPTR(src, weights, dst);
// Destination initialization if not yet initialized
const TensorShape dst_shape = compute_depthwise_convolution_shape(*src, *weights, info);
auto_init_if_empty(*dst, src->clone()->set_tensor_shape(dst_shape));
_name = "CpuDepthwiseConv2dAssemblyWrapperKernel";
std::string asm_kernel_name("");
#if defined(__aarch64__)
switch(src->data_type())
{
case DataType::QASYMM8:
if(is_data_type_quantized_per_channel(weights->data_type()))
{
create_arm_dwc_quant<uint8_t, int8_t, uint8_t>(src, weights, dst, info, cpu_info, _kernel_asm, _multipliers, _right_shifts, _left_shifts, asm_kernel_name);
}
else
{
create_arm_dwc_quant<uint8_t, uint8_t, uint8_t>(src, weights, dst, info, cpu_info, _kernel_asm, _multipliers, _right_shifts, _left_shifts, asm_kernel_name);
}
break;
case DataType::QASYMM8_SIGNED:
create_arm_dwc_quant<int8_t, int8_t, int8_t>(src, weights, dst, info, cpu_info, _kernel_asm, _multipliers, _right_shifts, _left_shifts, asm_kernel_name);
break;
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
case DataType::F16:
create_arm_dwc<float16_t, float16_t, float16_t>(src, weights, dst, info, cpu_info, _kernel_asm, asm_kernel_name);
break;
#endif // defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
case DataType::F32:
create_arm_dwc<float, float, float>(src, weights, dst, info, cpu_info, _kernel_asm, asm_kernel_name);
break;
default:
break;
}
#endif // defined(__aarch64__)
Window win = calculate_max_window(*dst, Steps());
ICpuKernel::configure(win);
if(_kernel_asm != nullptr)
{
_name += "/" + asm_kernel_name;
}
}
Status CpuDepthwiseConv2dAssemblyWrapperKernel::validate(const ITensorInfo *src, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *dst, const ConvolutionInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(src, dst);
#if !defined(__aarch64__)
ARM_COMPUTE_RETURN_ERROR_MSG("32-bit is not supported by assembly kernels");
#endif // !defined(__aarch64__)
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(src);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(src, 1, DataType::QASYMM8, DataType::QASYMM8_SIGNED, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(src->data_layout() != DataLayout::NHWC, "Only NHWC is supported by assembly kernels");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.dilation != Size2D(1, 1), "Assembly kernels do not support dilation != (1, 1)");
if(is_data_type_quantized_per_channel(weights->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QSYMM8_PER_CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->quantization_info().scale().size());
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, weights);
}
if(bias != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(bias->dimension(0) != weights->dimension(0));
if(is_data_type_quantized(src->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, bias);
}
}
if(dst->total_size() > 0)
{
const TensorShape dst_shape = misc::shape_calculator::compute_depthwise_convolution_shape(*src, *weights, info);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(dst->tensor_shape(), dst_shape);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(src, dst);
}
return Status{};
}
void CpuDepthwiseConv2dAssemblyWrapperKernel::run_op(ITensorPack &tensors, const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(_kernel_asm.get());
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_UNUSED(window);
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON(tensors.empty());
const ITensor *src = tensors.get_const_tensor(TensorType::ACL_SRC_0);
ITensor *dst = tensors.get_tensor(TensorType::ACL_DST);
ITensor *workspace = tensors.get_tensor(TensorType::ACL_INT_0);
ITensor *storage = tensors.get_tensor(TensorType::ACL_INT_1);
const auto src_ptr = src->buffer() + src->info()->offset_first_element_in_bytes();
auto dst_ptr = dst->buffer() + dst->info()->offset_first_element_in_bytes();
auto working_space = workspace->buffer() + workspace->info()->offset_first_element_in_bytes();
auto parameters_ptr = storage->buffer() + storage->info()->offset_first_element_in_bytes();
const auto src_shape = src->info()->tensor_shape();
const auto dst_shape = dst->info()->tensor_shape();
const auto src_padding = src->info()->padding();
const auto dst_padding = dst->info()->padding();
const size_t ld_src_col = src_shape[0] + src_padding.left + src_padding.right;
const size_t ld_src_row = ld_src_col * (src_shape[1] + src_padding.top + src_padding.bottom);
const size_t ld_src_batch = ld_src_row * src_shape[2];
const size_t ld_dst_col = dst_shape[0] + dst_padding.left + dst_padding.right;
const size_t ld_dst_row = ld_dst_col * (dst_shape[1] + dst_padding.top + dst_padding.bottom);
const size_t ld_dst_batch = ld_dst_row * dst_shape[2];
_kernel_asm->execute(src_ptr, ld_src_col, ld_src_row, ld_src_batch,
parameters_ptr,
dst_ptr, ld_dst_col, ld_dst_row, ld_dst_batch,
working_space, info.thread_id, info.num_threads);
}
void CpuDepthwiseConv2dAssemblyWrapperKernel::pack_parameters(void *parameters_ptr, void *bias_ptr, void *weights_ptr, size_t ld_weights_col, size_t ld_weight_row)
{
_kernel_asm->pack_parameters(parameters_ptr, bias_ptr, weights_ptr, ld_weights_col, ld_weight_row);
}
size_t CpuDepthwiseConv2dAssemblyWrapperKernel::get_storage_size() const
{
return _kernel_asm->get_storage_size();
}
size_t CpuDepthwiseConv2dAssemblyWrapperKernel::get_working_size(unsigned int num_threads, unsigned int num_input_channels) const
{
return _kernel_asm->get_working_size(num_threads, num_input_channels);
}
bool CpuDepthwiseConv2dAssemblyWrapperKernel::is_configured() const
{
return _kernel_asm != nullptr;
}
const char *CpuDepthwiseConv2dAssemblyWrapperKernel::name() const
{
return _name.c_str();
}
size_t CpuDepthwiseConv2dAssemblyWrapperKernel::get_mws(const CPUInfo &platform, size_t thread_count) const
{
ARM_COMPUTE_UNUSED(thread_count);
ARM_COMPUTE_UNUSED(platform);
return ICPPKernel::default_mws;
}
} // namespace kernels
} // namespace cpu
} // namespace arm_compute