blob: 62e329e691728351bd345519ae9e397e2351dedd [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Window.h"
#include "src/core/NEON/NEAsymm.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include <arm_neon.h>
#include <cmath>
#include <cstddef>
namespace arm_compute
{
namespace cpu
{
void neon_qasymm8_activation(const ITensor *src, ITensor *dst, const ActivationLayerInfo &act_info, const Window &window)
{
constexpr int window_step_x = 16;
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const ActivationLayerInfo::ActivationFunction act = act_info.activation();
Window win_collapsed = window.collapse_if_possible(window, Window::DimZ);
win_collapsed.set(Window::DimX, Window::Dimension(0, 1, 1));
Iterator input(src, win_collapsed);
Iterator output(dst, win_collapsed);
const UniformQuantizationInfo qi_in = src->info()->quantization_info().uniform();
const UniformQuantizationInfo qi_out = dst->info()->quantization_info().uniform();
const qasymm8x16_t va = vdupq_n_u8(quantize_qasymm8(act_info.a(), qi_in));
const qasymm8x16_t vb = vdupq_n_u8(quantize_qasymm8(act_info.b(), qi_in));
const qasymm8_t a = quantize_qasymm8(act_info.a(), qi_in);
const qasymm8_t b = quantize_qasymm8(act_info.b(), qi_in);
const qasymm8_t const_0 = quantize_qasymm8(0.f, qi_in);
const qasymm8x16_t vconst_0 = vdupq_n_u8(const_0);
const auto vconst_1 = vdupq_n_f32(1.f);
#ifndef __aarch64__
const auto vconst_0_f32 = vdupq_n_f32(0);
#endif // __aarch64__
const float32x4_t va_f32 = vdupq_n_f32(act_info.a());
const float32x4_t vb_f32 = vdupq_n_f32(act_info.b());
const float a_f32 = act_info.a();
const float b_f32 = act_info.b();
const auto const_6_f32 = vdupq_n_f32(6.f);
const auto const_0_f32 = vdupq_n_f32(0.f);
const auto const_3_f32 = vdupq_n_f32(3.f);
const auto const_inv_6_f32 = vdupq_n_f32(0.166666667f);
// Initialise scale/offset for re-quantization
float s = qi_in.scale / qi_out.scale;
float o = -qi_in.offset * s + qi_out.offset;
float32x4_t vs = vdupq_n_f32(s);
float32x4_t vo = vdupq_n_f32(o);
execute_window_loop(win_collapsed, [&](const Coordinates &)
{
const auto input_ptr = reinterpret_cast<const qasymm8_t *>(input.ptr());
const auto output_ptr = reinterpret_cast<qasymm8_t *>(output.ptr());
wrapper::traits::neon_bitvector_t<qasymm8_t, wrapper::traits::BitWidth::W128> tmp;
// Compute S elements per iteration
int x = window_start_x;
for(; x <= (window_end_x - window_step_x); x += window_step_x)
{
const auto vin = wrapper::vloadq(input_ptr + x);
if(act == ActivationLayerInfo::ActivationFunction::RELU)
{
// Perform activation
tmp = vmaxq_u8(vconst_0, vin);
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
{
// Perform activation
tmp = vminq_u8(va, vmaxq_u8(vconst_0, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
{
// Perform activation
tmp = vminq_u8(va, vmaxq_u8(vb, vin));
// Re-quantize to new output space
tmp = vmlaq_qasymm8(tmp, vs, vo);
}
else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[0])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[1])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[2])))),
wrapper::vdiv(vconst_1, wrapper::vadd(vconst_1, wrapper::vexpq(wrapper::vneg(vin_deq.val[3])))),
}
};
// Re-quantize to new output space
tmp = vquantize(tmp_dep, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::TANH)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[0], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[1], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[2], vb_f32))),
wrapper::vmul(va_f32, wrapper::vtanh(wrapper::vmul(vin_deq.val[3], vb_f32))),
}
};
// Re-quantize to new output space
tmp = vquantize(tmp_dep, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH)
{
// De-quantize
const auto vin_deq = vdequantize(vin, qi_in);
// Perform activation
const float32x4x4_t tmp_dep =
{
{
wrapper::vmul(vin_deq.val[0], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[0], const_3_f32))))),
wrapper::vmul(vin_deq.val[1], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[1], const_3_f32))))),
wrapper::vmul(vin_deq.val[2], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[2], const_3_f32))))),
wrapper::vmul(vin_deq.val[3], wrapper::vmul(const_inv_6_f32, wrapper::vmin(const_6_f32, wrapper::vmax(const_0_f32, wrapper::vadd(vin_deq.val[3], const_3_f32))))),
}
};
// Re-quantize to new output space
tmp = vquantize(tmp_dep, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
{
const auto vin_deq = vdequantize(vin, qi_in);
#ifdef __aarch64__
const uint32x4x4_t pos_mask =
{
{
wrapper::vcgtz(vin_deq.val[0]),
wrapper::vcgtz(vin_deq.val[1]),
wrapper::vcgtz(vin_deq.val[2]),
wrapper::vcgtz(vin_deq.val[3]),
}
};
#else // __aarch64__
const uint32x4x4_t pos_mask =
{
{
wrapper::vcgt(vin_deq.val[0], vconst_0_f32),
wrapper::vcgt(vin_deq.val[1], vconst_0_f32),
wrapper::vcgt(vin_deq.val[2], vconst_0_f32),
wrapper::vcgt(vin_deq.val[3], vconst_0_f32),
}
};
#endif // __aarch64__
const float32x4x4_t tmp_dep =
{
{
wrapper::vbsl(pos_mask.val[0], vin_deq.val[0], wrapper::vmul(va_f32, vin_deq.val[0])),
wrapper::vbsl(pos_mask.val[1], vin_deq.val[1], wrapper::vmul(va_f32, vin_deq.val[1])),
wrapper::vbsl(pos_mask.val[2], vin_deq.val[2], wrapper::vmul(va_f32, vin_deq.val[2])),
wrapper::vbsl(pos_mask.val[3], vin_deq.val[3], wrapper::vmul(va_f32, vin_deq.val[3])),
}
};
tmp = vquantize(tmp_dep, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
wrapper::vstore(output_ptr + x, tmp);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
qasymm8_t in = *(reinterpret_cast<const qasymm8_t *>(input_ptr + x));
qasymm8_t tmp = 0;
if(act == ActivationLayerInfo::ActivationFunction::RELU)
{
tmp = std::max(const_0, in);
tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
}
else if(act == ActivationLayerInfo::ActivationFunction::BOUNDED_RELU)
{
tmp = std::min(a, std::max(const_0, in));
tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
}
else if(act == ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU)
{
tmp = std::min(a, std::max(b, in));
tmp = utility::clamp<int32_t, qasymm8_t>(tmp * s + o);
}
else if(act == ActivationLayerInfo::ActivationFunction::LOGISTIC)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = 1.f / (1.f + std::exp(-tmp_f));
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::TANH)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = a_f32 * std::tanh(b_f32 * tmp_f);
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::HARD_SWISH)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = tmp_f * ((std::min(std::max((tmp_f + 3), 0.0f), 6.0f)) * 0.166666667f);
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else if(act == ActivationLayerInfo::ActivationFunction::LEAKY_RELU)
{
float tmp_f = dequantize_qasymm8(in, qi_in);
tmp_f = tmp_f > 0 ? tmp_f : tmp_f * a_f32;
tmp = quantize_qasymm8(tmp_f, qi_out);
}
else
{
ARM_COMPUTE_ERROR("Unsupported activation function");
}
*(output_ptr + x) = tmp;
}
},
input, output);
}
} // namespace cpu
} // namespace arm_compute