blob: e769bba782606582f0916161e00c6ca711572666 [file] [log] [blame]
/*
* Copyright (c) 2020-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef SRC_CORE_HELPERS_SCALEHELPERS_H
#define SRC_CORE_HELPERS_SCALEHELPERS_H
#include "arm_compute/core/Error.h"
#include "arm_compute/core/QuantizationInfo.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <cstdint>
namespace arm_compute
{
namespace scale_helpers
{
/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be QASYMM8 and in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
* @param[in] iq_info Input QuantizationInfo
* @param[in] oq_info Output QuantizationInfo
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
inline uint8_t delta_bilinear_c1_quantized(const uint8_t *pixel_ptr, size_t stride, float dx, float dy,
UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = dequantize_qasymm8(*pixel_ptr, iq_info);
const float a01 = dequantize_qasymm8(*(pixel_ptr + 1), iq_info);
const float a10 = dequantize_qasymm8(*(pixel_ptr + stride), iq_info);
const float a11 = dequantize_qasymm8(*(pixel_ptr + stride + 1), iq_info);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
return static_cast<uint8_t>(quantize_qasymm8(res, oq_info));
}
/** Computes bilinear interpolation for quantized input and output, using the pointer to the top-left pixel and the pixel's distance between
* the real coordinates and the smallest following integer coordinates. Input must be QASYMM8_SIGNED and in single channel format.
*
* @param[in] pixel_ptr Pointer to the top-left pixel value of a single channel input.
* @param[in] stride Stride to access the bottom-left and bottom-right pixel values
* @param[in] dx Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy Pixel's distance between the Y real coordinate and the smallest Y following integer
* @param[in] iq_info Input QuantizationInfo
* @param[in] oq_info Output QuantizationInfo
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
inline int8_t delta_bilinear_c1_quantized(const int8_t *pixel_ptr, size_t stride, float dx, float dy,
UniformQuantizationInfo iq_info, UniformQuantizationInfo oq_info)
{
ARM_COMPUTE_ERROR_ON(pixel_ptr == nullptr);
const float dx1 = 1.0f - dx;
const float dy1 = 1.0f - dy;
const float a00 = dequantize_qasymm8_signed(*pixel_ptr, iq_info);
const float a01 = dequantize_qasymm8_signed(*(pixel_ptr + 1), iq_info);
const float a10 = dequantize_qasymm8_signed(*(pixel_ptr + stride), iq_info);
const float a11 = dequantize_qasymm8_signed(*(pixel_ptr + stride + 1), iq_info);
const float w1 = dx1 * dy1;
const float w2 = dx * dy1;
const float w3 = dx1 * dy;
const float w4 = dx * dy;
float res = a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
return static_cast<int8_t>(quantize_qasymm8_signed(res, oq_info));
}
/** Return the pixel at (x,y) using area interpolation by clamping when out of borders. The image must be single channel U8
*
* @note The interpolation area depends on the width and height ration of the input and output images
* @note Currently average of the contributing pixels is calculated
*
* @param[in] first_pixel_ptr Pointer to the first pixel of a single channel U8 image.
* @param[in] stride Stride in bytes of the image
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] wr Width ratio among the input image width and output image width.
* @param[in] hr Height ratio among the input image height and output image height.
* @param[in] x X position of the wanted pixel
* @param[in] y Y position of the wanted pixel
*
* @return The pixel at (x, y) using area interpolation.
*/
inline uint8_t
pixel_area_c1u8_clamp(const uint8_t *first_pixel_ptr, size_t stride, size_t width, size_t height, float wr,
float hr, int x, int y)
{
ARM_COMPUTE_ERROR_ON(first_pixel_ptr == nullptr);
// Calculate sampling position
float in_x = (x + 0.5f) * wr - 0.5f;
float in_y = (y + 0.5f) * hr - 0.5f;
// Get bounding box offsets
int x_from = std::floor(x * wr - 0.5f - in_x);
int y_from = std::floor(y * hr - 0.5f - in_y);
int x_to = std::ceil((x + 1) * wr - 0.5f - in_x);
int y_to = std::ceil((y + 1) * hr - 0.5f - in_y);
// Clamp position to borders
in_x = std::max(-1.f, std::min(in_x, static_cast<float>(width)));
in_y = std::max(-1.f, std::min(in_y, static_cast<float>(height)));
// Clamp bounding box offsets to borders
x_from = ((in_x + x_from) < -1) ? -1 : x_from;
y_from = ((in_y + y_from) < -1) ? -1 : y_from;
x_to = ((in_x + x_to) > width) ? (width - in_x) : x_to;
y_to = ((in_y + y_to) > height) ? (height - in_y) : y_to;
// Get pixel index
const int xi = std::floor(in_x);
const int yi = std::floor(in_y);
// Bounding box elements in each dimension
const int x_elements = (x_to - x_from + 1);
const int y_elements = (y_to - y_from + 1);
ARM_COMPUTE_ERROR_ON(x_elements == 0 || y_elements == 0);
// Sum pixels in area
int sum = 0;
for(int j = yi + y_from, je = yi + y_to; j <= je; ++j)
{
const uint8_t *ptr = first_pixel_ptr + j * stride + xi + x_from;
sum = std::accumulate(ptr, ptr + x_elements, sum);
}
// Return average
return sum / (x_elements * y_elements);
}
/** Computes bilinear interpolation using the top-left, top-right, bottom-left, bottom-right pixels and the pixel's distance between
* the real coordinates and the smallest following integer coordinates.
*
* @param[in] a00 The top-left pixel value.
* @param[in] a01 The top-right pixel value.
* @param[in] a10 The bottom-left pixel value.
* @param[in] a11 The bottom-right pixel value.
* @param[in] dx_val Pixel's distance between the X real coordinate and the smallest X following integer
* @param[in] dy_val Pixel's distance between the Y real coordinate and the smallest Y following integer
*
* @note dx and dy must be in the range [0, 1.0]
*
* @return The bilinear interpolated pixel value
*/
inline float delta_bilinear(float a00, float a01, float a10, float a11, float dx_val, float dy_val)
{
const float dx1_val = 1.0f - dx_val;
const float dy1_val = 1.0f - dy_val;
const float w1 = dx1_val * dy1_val;
const float w2 = dx_val * dy1_val;
const float w3 = dx1_val * dy_val;
const float w4 = dx_val * dy_val;
return a00 * w1 + a01 * w2 + a10 * w3 + a11 * w4;
}
} // namespace scale_helpers
} // namespace arm_compute
#endif /* SRC_CORE_HELPERS_SCALEHELPERS_H */