blob: f3cb9a1d1f2318260e03e97354ab0663dce7c75f [file] [log] [blame]
/*
* Copyright (c) 2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#pragma once
#include "pool_common.hpp"
#include "utils.hpp"
namespace arm_conv {
namespace pooling {
template <class strategy>
class PoolingDepthfirstGenericQuantized : public PoolingCommon<typename strategy::operand_type, typename strategy::return_type, Requantize32>
{
using TInput = typename strategy::operand_type;
using TOutput = typename strategy::return_type;
const PoolingArgs m_args; // Copy of arguments
const Requantize32 m_requant; // Quantization parameters
unsigned int input_rows(void) const
{
return m_args.pool_window.rows;
}
unsigned int input_cols(void) const
{
return m_args.pool_window.cols;
}
public:
PoolingDepthfirstGenericQuantized(const PoolingArgs &args, const Requantize32 &rq) : m_args(args), m_requant(rq)
{
}
PoolingDepthfirstGenericQuantized(PoolingDepthfirstGenericQuantized &) = delete;
PoolingDepthfirstGenericQuantized &operator=(PoolingDepthfirstGenericQuantized &) = delete;
size_t sizeof_input_pointer_array(void) const
{
return sizeof(TInput *) * input_rows() * input_cols();
}
size_t get_working_size(unsigned int num_threads) const override
{
return num_threads * sizeof_input_pointer_array();
}
void execute(
const void *const input,
void *const output,
void *const working_space,
unsigned int thread_id,
unsigned int num_threads
) const override
{
const size_t ld_input_col = m_args.n_channels;
const size_t ld_input_row = ld_input_col * m_args.input_cols;
const size_t ld_input_batch = ld_input_row * m_args.input_rows;
const size_t ld_output_col = ld_input_col;
const size_t ld_output_row = ld_output_col * m_args.output_cols;
const size_t ld_output_batch = ld_output_row * m_args.output_rows;
execute(
input, ld_input_col, ld_input_row, ld_input_batch,
output, ld_output_col, ld_output_row, ld_output_batch,
working_space,
thread_id, num_threads
);
}
void execute(
const void *const input,
size_t ld_input_col,
size_t ld_input_row,
size_t ld_input_batch,
void *const output,
size_t ld_output_col,
size_t ld_output_row,
size_t ld_output_batch,
void *const working_space,
unsigned int thread_id,
unsigned int num_threads
) const override
{
execute(
m_args.n_batches, m_args.input_rows, m_args.input_cols,
m_args.n_channels,
input, ld_input_col, ld_input_row, ld_input_batch,
m_args.padding,
m_args.output_rows, m_args.output_cols,
output, ld_output_col, ld_output_row, ld_output_batch,
working_space,
thread_id, num_threads
);
}
void execute(
unsigned int batches,
unsigned int height,
unsigned int width,
unsigned int channels,
const void *const _input,
size_t ld_input_col,
size_t ld_input_row,
size_t ld_input_batch,
const PaddingValues &padding,
unsigned int output_height,
unsigned int output_width,
void *const _output,
size_t ld_output_col,
size_t ld_output_row,
size_t ld_output_batch,
void *const _working_space,
unsigned int thread_id,
unsigned int num_threads
) const override
{
strategy strat(m_args.cpu_info);
#ifdef CYCLE_PROFILING
arm_gemm::profiler prof;
#endif // CYCLE_PROFILING
const unsigned int roundup_output_rows = roundup(output_height, num_threads);
const unsigned int rows_per_thread = roundup_output_rows / num_threads;
int start_out_height = static_cast<int>(thread_id * rows_per_thread);
int end_out_height = std::min<int>(output_height, static_cast<int>((thread_id + 1) * rows_per_thread));
unsigned int start_channel = 0;
unsigned int end_channel = channels;
if(output_height == 1)
{
const unsigned int channels_per_thread = roundup(channels, num_threads) / num_threads;
start_channel = thread_id * channels_per_thread;
end_channel = std::min(start_channel + channels_per_thread, channels);
// Reset start and end rows
start_out_height = 0;
end_out_height = output_height;
}
if(start_channel >= end_channel)
{
// Early exit in case of multiple threads parallelising on channels
return;
}
// Cast input and output pointers into the right types
const TInput *const inptr = static_cast<const TInput *>(_input) + start_channel;
TOutput *const outptr = static_cast<TOutput *>(_output) + start_channel;
// Grab the input pointer array
uint8_t *const working_space = static_cast<uint8_t *>(_working_space);
const TInput **const inptr_array = reinterpret_cast<const TInput **>(working_space + thread_id * sizeof_input_pointer_array());
// For each output tile, construct the requisite set of pointers and call
// into the kernel.
for (unsigned int batch = 0; batch < batches; batch++)
{
// Get batch pointers
const auto inptr_batch = inptr + batch * ld_input_batch;
const auto outptr_batch = outptr + batch * ld_output_batch;
for (int out_i = start_out_height; out_i < end_out_height; out_i++)
{
const int start_in_i = out_i * m_args.pool_stride.rows - padding.top;
const int end_in_i = start_in_i + m_args.pool_window.rows;
// Compute top/bottom padding
const auto pad_top = static_cast<unsigned int>(-std::min(start_in_i, 0));
const auto pad_bottom = static_cast<unsigned int>(-std::min(static_cast<int>(height) - end_in_i, 0));
// Compute the number of pooling window rows which are contained in
// either the valid region of the input tensor, or the padding.
const auto padded_bottom = std::min<unsigned int>(
start_in_i + m_args.pool_window.rows, height + padding.bottom
);
const auto n_total_rows = padded_bottom - start_in_i;
for (int out_j = 0, start_in_j = -padding.left;
out_j < static_cast<int>(output_width);
out_j++, start_in_j += m_args.pool_stride.cols)
{
const int end_in_j = start_in_j + m_args.pool_window.cols;
// Compute left/right padding
const auto pad_left = static_cast<unsigned int>(-std::min(start_in_j, 0));
const auto pad_right = static_cast<unsigned int>(-std::min(static_cast<int>(width) - end_in_j, 0));
// Compute the number of pooling window columns which are contained
// in either the valid region of the input tensor, or the padding.
const auto padded_right = std::min<unsigned int>(
start_in_j + m_args.pool_window.cols, width + padding.right
);
const auto n_total_cols = padded_right - start_in_j;
// Construct the input pointer array - fill in all valid points
// contiguously.
const TInput **ptrs = inptr_array;
for (auto i = pad_top; i < input_rows() - pad_bottom; i++)
{
// Can skip over the left padding because we will have either the
// same or less than the previous tile.
unsigned int j = pad_left;
const TInput *colptr = inptr_batch + (start_in_i + i) * ld_input_row + (start_in_j + j) * ld_input_col;
for (; j < input_cols() - pad_right; j++)
{
*(ptrs++) = colptr;
colptr += ld_input_col;
}
}
// Compute the number of valid cells
const auto valid_rows = input_rows() - pad_top - pad_bottom;
const auto valid_cols = input_cols() - pad_left - pad_right;
const auto valid_cells = valid_rows * valid_cols;
const auto cells_in_range = n_total_rows * n_total_cols;
const auto window_cells = m_args.exclude_padding ? valid_cells : cells_in_range;
// Get the output pointer for this call
TOutput *outptr = outptr_batch + out_i * ld_output_row + out_j * ld_output_col;
#ifdef CYCLE_PROFILING
// TODO Work number
auto p = prof.ScopedProfiler(PROFILE_KERNEL, (unsigned long) 0);
#endif
strat.kernel(window_cells, valid_cells, end_channel - start_channel, inptr_array, outptr, m_requant);
}
}
}
}
};
} // namespace pooling
} // namespace arm_conv