blob: 49a045382dd94fdbec151240c65ec8c622197e12 [file] [log] [blame]
/*
* Copyright (c) 2017-2021 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "src/core/NEON/kernels/NENormalizationLayerKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include "src/core/CPP/Validate.h"
#include "src/core/NEON/NEFixedPoint.h"
#include "src/core/NEON/NEMath.h"
#include "src/core/NEON/wrapper/wrapper.h"
#include "src/core/helpers/AutoConfiguration.h"
#include "src/core/helpers/NormalizationHelpers.h"
#include "src/core/helpers/WindowHelpers.h"
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo &norm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_squared, output);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(input);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_squared);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, input_squared);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(!(norm_info.norm_size() % 2), "Normalization size should be odd");
// Checks performed when output is configured
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_SHAPES(input, output);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, output);
}
return Status{};
}
} // namespace
NENormalizationLayerKernel::NENormalizationLayerKernel()
: _func(nullptr), _input(nullptr), _input_squared(nullptr), _output(nullptr), _norm_info(NormType::IN_MAP_1D)
{
}
void NENormalizationLayerKernel::configure(const ITensor *input, const ITensor *input_squared, ITensor *output, NormalizationLayerInfo norm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_squared, output);
// Output tensor auto initialization if not yet initialized
auto_init_if_empty(*output->info(), *input->info());
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input->info(), input_squared->info(), output->info(), norm_info));
const unsigned int norm_idx = get_normalization_dimension_index(input->info()->data_layout(), norm_info);
_input = input;
_input_squared = input_squared;
_output = output;
_norm_info = norm_info;
switch(_input->info()->data_type())
{
case DataType::F32:
{
switch(norm_idx)
{
case 0:
{
if(norm_info.type() == NormType::IN_MAP_2D)
{
_func = &NENormalizationLayerKernel::normalize_float<float, 4, 0, true>;
}
else
{
_func = &NENormalizationLayerKernel::normalize_float<float, 4, 0, false>;
}
break;
}
case 1:
if(norm_info.type() == NormType::IN_MAP_2D)
{
_func = &NENormalizationLayerKernel::normalize_float<float, 4, 1, true>;
}
else
{
_func = &NENormalizationLayerKernel::normalize_float<float, 4, 1, false>;
}
break;
case 2:
_func = &NENormalizationLayerKernel::normalize_float<float, 4, 2, false>;
break;
default:
break;
}
break;
}
#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
case DataType::F16:
{
switch(norm_idx)
{
case 0:
{
if(norm_info.type() == NormType::IN_MAP_2D)
{
_func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 0, true>;
}
else
{
_func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 0, false>;
}
break;
}
case 1:
if(norm_info.type() == NormType::IN_MAP_2D)
{
_func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 1, true>;
}
else
{
_func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 1, false>;
}
break;
case 2:
_func = &NENormalizationLayerKernel::normalize_float<float16_t, 8, 2, false>;
break;
default:
break;
}
break;
}
#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
default:
ARM_COMPUTE_ERROR("NOT SUPPORTED!");
}
// Configure kernel window
Window win = calculate_max_window(*input->info(), Steps());
INEKernel::configure(win);
}
template <typename T, unsigned int S, unsigned int dim, bool do_2D_norm>
void NENormalizationLayerKernel::normalize_float(const Window &window)
{
/** SIMD vector tag type. */
using ExactTagType = typename wrapper::traits::neon_vector<T, S>::tag_type;
Window win(window);
win.set(Window::DimX, Window::Dimension(0, 1, 1));
const auto window_start_x = static_cast<int>(window.x().start());
const auto window_end_x = static_cast<int>(window.x().end());
const int window_step_x = S;
Iterator input(_input, win);
Iterator input_squared(_input_squared, win);
Iterator output(_output, win);
const int dim_y = _input->info()->data_layout() == DataLayout::NCHW ? 1 : 2;
const int radius = _norm_info.norm_size() / 2;
const int input_squared_stride_x = _input_squared->info()->strides_in_bytes()[0];
const int input_squared_stride_slice = _input_squared->info()->strides_in_bytes()[dim];
const int input_squared_stride_row = _input_squared->info()->strides_in_bytes()[dim_y];
const int max_right = _input->info()->dimension(dim) - 1;
const int max_bottom = _input->info()->dimension(dim_y) - 1;
const auto coeff_vec = wrapper::vdup_n(static_cast<T>(_norm_info.scale_coeff()), ExactTagType{});
const auto beta_vec = wrapper::vdup_n(static_cast<T>(_norm_info.beta()), ExactTagType{});
const auto kappa_vec = wrapper::vdup_n(static_cast<T>(_norm_info.kappa()), ExactTagType{});
auto sequential_normalization = [&](const int x, const Coordinates & id, const int current_row, const int first_row, const int last_row, const T * input_ptr, const uint8_t *input_squared_start_ptr,
T * output_ptr)
{
const int current_slice = dim == 0 ? x : id[dim];
const int first_slice = std::max(current_slice - radius, 0);
const int last_slice = std::min(current_slice + radius, max_right);
const uint8_t *const input_squared_x_ptr = input_squared_start_ptr + x * input_squared_stride_x;
// Accumulate 2D In-Map values
auto accu = static_cast<T>(0.f);
for(int j = first_row; j <= last_row; ++j)
{
// Compute row displacement
const uint8_t *const input_squared_ptr = input_squared_x_ptr + (j - current_row) * input_squared_stride_row;
for(int i = first_slice; i <= last_slice; ++i)
{
accu += *reinterpret_cast<const T *>(input_squared_ptr + (i - current_slice) * input_squared_stride_slice);
}
}
// Normalize
const auto normalized = std::pow(accu * static_cast<T>(_norm_info.scale_coeff()) + static_cast<T>(_norm_info.kappa()), _norm_info.beta());
const auto normalized_pixel = (*(input_ptr + x)) / normalized;
*(output_ptr + x) = normalized_pixel;
};
execute_window_loop(win, [&](const Coordinates & id)
{
const auto input_ptr = reinterpret_cast<const T *>(input.ptr());
auto output_ptr = reinterpret_cast<T *>(output.ptr());
// Get range to normalize
const int current_row = do_2D_norm ? id[dim_y] : 0;
const int first_row = do_2D_norm ? std::max(current_row - radius, 0) : 0;
const int last_row = do_2D_norm ? std::min(current_row + radius, max_bottom) : 0;
int x = window_start_x;
// Compute serially starting elements for the case x dimension is width
for(; x < radius && x < window_end_x && dim == 0; ++x)
{
sequential_normalization(x, id, current_row, first_row, last_row, input_ptr, input_squared.ptr(), output_ptr);
}
// Compute vectorized
for(; x <= window_end_x - window_step_x - radius; x += window_step_x)
{
const int current_slice = dim == 0 ? x : id[dim];
const int first_slice = std::max(current_slice - radius, 0);
const int last_slice = std::min(current_slice + radius, max_right);
const uint8_t *const input_squared_x_ptr = input_squared.ptr() + x * input_squared_stride_x;
// Accumulate 2D In-Map values
auto accu = wrapper::vdup_n(static_cast<T>(0.f), ExactTagType{});
for(int j = first_row; j <= last_row; ++j)
{
// Compute row displacement
const uint8_t *const input_squared_ptr = input_squared_x_ptr + (j - current_row) * input_squared_stride_row;
for(int i = first_slice; i <= last_slice; ++i)
{
accu = wrapper::vadd(accu, wrapper::vloadq(reinterpret_cast<const T *>(input_squared_ptr + (i - current_slice) * input_squared_stride_slice)));
}
}
// Normalize
const auto normalized = wrapper::vpow(wrapper::vmla(kappa_vec, coeff_vec, accu), beta_vec);
const auto normalized_pixel = wrapper::vmul(wrapper::vloadq(input_ptr + x), wrapper::vinv(normalized));
wrapper::vstore(reinterpret_cast<T *>(output_ptr + x), normalized_pixel);
}
// Compute left-over elements
for(; x < window_end_x; ++x)
{
sequential_normalization(x, id, current_row, first_row, last_row, input_ptr, input_squared.ptr(), output_ptr);
}
},
input, input_squared, output);
}
Status NENormalizationLayerKernel::validate(const ITensorInfo *input, const ITensorInfo *input_squared, const ITensorInfo *output, const NormalizationLayerInfo norm_info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input, input_squared, output, norm_info));
return Status{};
}
void NENormalizationLayerKernel::run(const Window &window, const ThreadInfo &info)
{
ARM_COMPUTE_UNUSED(info);
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
// Run function
(this->*_func)(window);
}
} // namespace arm_compute