blob: 832801255fbda01dd68bfd843669ef4ad78b3c5e [file] [log] [blame]
/*
* Copyright (c) 2017-2018 Arm Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Window.h"
using namespace arm_compute;
ValidRegion AccessWindowRectangle::compute_valid_region(const Window &window, const ValidRegion &input_valid_region) const
{
return compute_valid_region(window, input_valid_region, false, BorderSize(0));
}
ValidRegion AccessWindowRectangle::compute_valid_region(const Window &window, ValidRegion input_valid_region, bool border_undefined, BorderSize border_size) const
{
if(_info == nullptr)
{
return input_valid_region;
}
Coordinates &anchor = input_valid_region.anchor;
Coordinates old_anchor(anchor);
TensorShape &shape = input_valid_region.shape;
if(!border_undefined)
{
border_size = BorderSize(0);
}
// Start of the valid region is equal to the start of the window. But it
// cannot be less than the start of the input's valid region plus the border
// size required by this kernel (if undefined).
// Additionally the valid region is shifted by the offset that is used by
// the kernel to write back output values.
anchor.set(0, std::max<int>(window.x().start() * _scale_x, anchor[0] + border_size.left) + _x);
if(_info->num_dimensions() > 1)
{
anchor.set(1, std::max<int>(window.y().start() * _scale_y, anchor[1] + border_size.top) + _y);
}
// End of the valid region is equal to the start of the last write of the
// kernel plus the number of written elements. (This assumes that all
// written elements are valid). Nevertheless the end cannot be larger than
// the end of the input's valid region minus the border size.
// Note: not the end points of the region are stored but its size. Thus the
// old size is first converted into end points to compared against the
// execution window. Afterwards the new end points are converted back into
// a size of the region.
shape.set(0, std::min<int>(old_anchor[0] + shape[0] - border_size.right, (window.x().end() - window.x().step()) * _scale_x + _width) - anchor[0]);
if(_info->num_dimensions() > 1)
{
shape.set(1, std::min<int>(old_anchor[1] + shape[1] - border_size.bottom, (window.y().end() - window.y().step()) * _scale_y + _height) - anchor[1]);
}
// For higher dimensions use the intersection of the window size and the
// valid region of the input
for(size_t d = 2; d < _info->num_dimensions(); ++d)
{
anchor.set(d, std::max(window[d].start(), input_valid_region.anchor[d]));
shape.set(d, std::min<int>(window[d].end(), input_valid_region.shape[d]) - anchor[d]);
}
return input_valid_region;
}
void AccessWindowRectangle::set_valid_region(const Window &window, const ValidRegion &input_valid_region, bool border_undefined, const BorderSize &border_size)
{
if(_info != nullptr)
{
_info->set_valid_region(compute_valid_region(window, input_valid_region, border_undefined, border_size));
}
}
bool AccessWindowRectangle::update_window_if_needed(Window &window) const
{
// Only update the window size if we can't use padding
if(_info == nullptr || _info->is_resizable())
{
return false;
}
PaddingSize needed = get_needed_padding(window);
PaddingSize available = _info->padding();
if(needed.top <= available.top && needed.right <= available.right
&& needed.bottom <= available.bottom
&& needed.left <= available.left)
{
return false;
}
const TensorShape &shape = _info->tensor_shape();
const Strides &strides = _info->strides_in_bytes();
const size_t offset_first_element = _info->offset_first_element_in_bytes();
bool window_modified = false;
int front_pad_y = 0;
const int min_y = window.y().start() * _scale_y + _y;
const int max_y = (window.y().end() - window.y().step()) * _scale_y + _y + _height;
// Adjust window start for Y dimension
if(min_y < 0)
{
// Calculate rows available above the tensor
const int front_pad_y_available = -static_cast<int>(offset_first_element / strides[1]);
if(min_y < front_pad_y_available)
{
// Not enough padding available, need to shrink the window
int start = adjust_up(min_y, front_pad_y_available, window.y().step() * _scale_y) - _y;
start = std::min<int>(start / _scale_y, window.y().end());
window.set(1, Window::Dimension(start, window.y().end(), window.y().step()));
window_modified = true;
}
// Update front padding with reconstructed value
front_pad_y = std::max(0, static_cast<int>(std::floor(-window.y().start() * _scale_y)) - _y);
}
// Adjust window end for Y dimension
if(max_y > static_cast<int>(shape[1]))
{
const int stride_z = _info->num_dimensions() > 2 ? strides[2] : _info->total_size();
// Calculate rows available below the tensor
const int tail_pad_y_available = (stride_z / strides[1]) - shape[1] - front_pad_y;
if(static_cast<int>(shape[1]) + tail_pad_y_available < max_y)
{
// Not enough padding available, need to shrink the window
int end = adjust_down(max_y, shape[1] + tail_pad_y_available, window.y().step() * _scale_y) + window.y().step() * _scale_y - _y - _height;
end = std::max<int>(window.y().start(), end / _scale_y);
window.set(1, Window::Dimension(window.y().start(), end, window.y().step()));
window_modified = true;
}
}
int front_pad_x = 0;
const int min_x = window.x().start() * _scale_x + _x;
const int max_x = (window.x().end() - window.x().step()) * _scale_x + _x + _width;
const int stride_y = _info->num_dimensions() > 1 ? strides[1] : _info->total_size();
// Adjust window start for X dimension
if(min_x < 0)
{
const int front_pad_x_available = -std::min<int>(static_cast<int>(offset_first_element) - front_pad_y * strides[1], stride_y - shape[0] * strides[0]) / static_cast<int>(strides[0]);
if(min_x < front_pad_x_available)
{
// Not enough padding available, need to shrink the window
int start = adjust_up(min_x, front_pad_x_available, window.x().step() * _scale_x) - _x;
start = std::min<int>(start / _scale_x, window.x().end());
window.set(0, Window::Dimension(start, window.x().end(), window.x().step()));
window_modified = true;
}
// Update front padding with reconstructed value
front_pad_x = std::max(0, static_cast<int>(std::floor(-window.x().start() * _scale_x)) - _x);
}
// Adjust window end for X dimension
if(max_x > static_cast<int>(shape[0]))
{
const int tail_pad_x_available = (stride_y / strides[0]) - shape[0] - front_pad_x;
if(static_cast<int>(shape[0]) + tail_pad_x_available < max_x)
{
// Not enough padding available, need to shrink the window
int end = adjust_down(max_x, shape[0] + tail_pad_x_available, window.x().step() * _scale_x) + window.x().step() * _scale_x - _x - _width;
end = std::max<int>(window.x().start(), end / _scale_x);
window.set(0, Window::Dimension(window.x().start(), end, window.x().step()));
window_modified = true;
}
}
window.validate();
return window_modified;
}
bool AccessWindowRectangle::update_padding_if_needed(const Window &window)
{
// Only update the padding if the tensor allows it
if(_info == nullptr || !_info->is_resizable())
{
return false;
}
// Update strides in tensor info
return _info->extend_padding( get_needed_padding(window));
}
PaddingSize AccessWindowRectangle::get_needed_padding(const Window &window)const
{
ARM_COMPUTE_ERROR_ON(_scale_x == 0);
ARM_COMPUTE_ERROR_ON(_scale_y == 0);
const int min_x = window.x().start() * _scale_x + _x;
const int max_x = (window.x().end() - window.x().step()) * _scale_x + _x + _width;
const int min_y = window.y().start() * _scale_y + _y;
const int max_y = (window.y().end() - window.y().step()) * _scale_y + _y + _height;
const TensorShape &shape = _info->tensor_shape();
PaddingSize padding;
padding.left = std::max(0, -min_x);
padding.right = std::max<int>(0, max_x - shape[0]);
padding.top = std::max(0, -min_y);
padding.bottom = std::max<int>(0, max_y - shape[1]);
return padding;
}