blob: b7593aeff187a6aeb5c96c01a7e2d2fe681c279d [file] [log] [blame]
R"(
/*
* Copyright (c) 2018-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPERS_ASYMM_H
#define ARM_COMPUTE_HELPERS_ASYMM_H
/*
* Copyright (c) 2016-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPER_H
#define ARM_COMPUTE_HELPER_H
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_accumulate_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#if defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#pragma OPENCL EXTENSION cl_arm_printf : enable
#endif // defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#define GPU_ARCH_MIDGARD 0x100
#define GPU_ARCH_BIFROST 0x200
/** Concatenate two inputs.
*
* @param[in] a The first input to be concatenated
* @param[in] b The second input to be concatenated
*
* @return The concatenated output
*/
#define CONCAT(a, b) a##b
/** Expand the given vector
*
* @param[in] x The vector to be expanded
*
* @return The expanded output
*/
#define EXPAND(x) x
/** Clamp the given value between an upper and lower bound.
*
* @param[in] x The value to be clamped
* @param[in] min_val The lower bound
* @param[in] max_val The upper bound
*
* @return The clamped value.
*/
#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
/** REVn reverses the given vector whose size is n.
* @name REVn
*
* @param[in] x The vector to be reversed
*
* @return The reversed vector
* @{
*/
#define REV1(x) ((x))
#define REV2(x) ((x).s10)
#define REV3(x) ((x).s210)
#define REV4(x) ((x).s3210)
#define REV8(x) ((x).s76543210)
#define REV16(x) ((x).sFEDCBA9876543210)
/** @} */ // end of group REVn
/** Reverse the given vector.
* @name REVERSE
*
* @param[in] x The vector to be reversed
* @param[in] s The size of the vector
*
* @return The reversed vector
* @{
*/
#define REVERSE_STR(x, s) REV##s((x))
#define REVERSE(x, s) REVERSE_STR(x, s)
/** @} */ // end of group REVERSE
/** Circular-right-shift (rotate-right) the vector of size s by the amount of n.
* @name ROTs_n
*
* @param[in] x The vector to be shifted
*
* @return The shifted vector
* @{
*/
#define ROT1_0(x) ((x))
#define ROT2_0(x) ((x))
#define ROT2_1(x) ((x).s10)
#define ROT3_0(x) ((x))
#define ROT3_1(x) ((x).s201)
#define ROT3_2(x) ((x).s120)
#define ROT4_0(x) ((x))
#define ROT4_1(x) ((x).s3012)
#define ROT4_2(x) ((x).s2301)
#define ROT4_3(x) ((x).s1230)
#define ROT8_0(x) ((x))
#define ROT8_1(x) ((x).s70123456)
#define ROT8_2(x) ((x).s67012345)
#define ROT8_3(x) ((x).s56701234)
#define ROT8_4(x) ((x).s45670123)
#define ROT8_5(x) ((x).s34567012)
#define ROT8_6(x) ((x).s23456701)
#define ROT8_7(x) ((x).s12345670)
#define ROT16_0(x) ((x))
#define ROT16_1(x) ((x).sF0123456789ABCDE)
#define ROT16_2(x) ((x).sEF0123456789ABCD)
#define ROT16_3(x) ((x).sDEF0123456789ABC)
#define ROT16_4(x) ((x).sCDEF0123456789AB)
#define ROT16_5(x) ((x).sBCDEF0123456789A)
#define ROT16_6(x) ((x).sABCDEF0123456789)
#define ROT16_7(x) ((x).s9ABCDEF012345678)
#define ROT16_8(x) ((x).s89ABCDEF01234567)
#define ROT16_9(x) ((x).s789ABCDEF0123456)
#define ROT16_10(x) ((x).s6789ABCDEF012345)
#define ROT16_11(x) ((x).s56789ABCDEF01234)
#define ROT16_12(x) ((x).s456789ABCDEF0123)
#define ROT16_13(x) ((x).s3456789ABCDEF012)
#define ROT16_14(x) ((x).s23456789ABCDEF01)
#define ROT16_15(x) ((x).s123456789ABCDEF0)
/** @} */ // end of group ROTs_n
/** Circular-right-shift (rotate-right) the given vector by the given amount.
* @name ROTATE
*
* @param[in] x The vector to be shifted
* @param[in] s The size of the vector
* @param[in] n The amount to be shifted
*
* @return The shifted vector
* @{
*/
#define ROTATE_STR(x, s, n) ROT##s##_##n(x)
#define ROTATE(x, s, n) ROTATE_STR(x, s, n)
/** @} */ // end of group ROTATE
/** Creates a vector of size n filled with offset values corresponding to the location of each element.
* @name V_OFFSn
*
* @param[in] dt The data type of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define V_OFFS1(dt) (dt)(0)
#define V_OFFS2(dt) (dt)(0, 1)
#define V_OFFS3(dt) (dt)(0, 1, 3)
#define V_OFFS4(dt) (dt)(0, 1, 2, 3)
#define V_OFFS8(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7)
#define V_OFFS16(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
/** @} */ // end of group V_OFFSn
/** Create a vector filled with offset values corresponding to the location of each element.
* @name VEC_OFFS
*
* @param[in] dt The data type of the output vector
* @param[in] s The size of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define VEC_OFFS_STR(dt, s) V_OFFS##s(dt)
#define VEC_OFFS(dt, s) VEC_OFFS_STR(dt, s)
/** @} */ // end of group VEC_OFFS
#define VLOAD_STR(size) vload##size
#define VLOAD(size) VLOAD_STR(size)
#define VSTORE_STR(size) vstore##size
#define VSTORE(size) VSTORE_STR(size)
#define float1 float
#define half1 half
#define char1 char
#define uchar1 uchar
#define short1 short
#define ushort1 ushort
#define int1 int
#define uint1 uint
#define long1 long
#define ulong1 ulong
#define double1 double
#define vload1(OFFSET, PTR) *(OFFSET + PTR)
#define vstore1(DATA, OFFSET, PTR) *(OFFSET + PTR) = DATA
// Convert built-in functions with _sat modifier are not supported in floating point so we create defines
// without _sat to overcome this issue
#define convert_float_sat convert_float
#define convert_float1_sat convert_float
#define convert_float2_sat convert_float2
#define convert_float3_sat convert_float3
#define convert_float4_sat convert_float4
#define convert_float8_sat convert_float8
#define convert_float16_sat convert_float16
#define convert_half_sat convert_float
#define convert_half1_sat convert_half
#define convert_half2_sat convert_half2
#define convert_half3_sat convert_half3
#define convert_half4_sat convert_half4
#define convert_half8_sat convert_half8
#define convert_half16_sat convert_half16
#define convert_float1 convert_float
#define convert_half1 convert_half
#define convert_char1 convert_char
#define convert_uchar1 convert_uchar
#define convert_short1 convert_short
#define convert_ushort1 convert_ushort
#define convert_int1 convert_int
#define convert_uint1 convert_uint
#define convert_long1 convert_long
#define convert_ulong1 convert_ulong
#define convert_double1 convert_double
#define convert_char1_sat convert_char_sat
#define convert_uchar1_sat convert_uchar_sat
#define convert_short1_sat convert_short_sat
#define convert_ushort1_sat convert_ushort_sat
#define convert_int1_sat convert_int_sat
#define convert_uint1_sat convert_uint_sat
#define convert_long1_sat convert_long_sat
#define convert_ulong1_sat convert_ulong_sat
#define convert_double1_sat convert_double_sat
#define VEC_DATA_TYPE_STR(type, size) type##size
#define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)
#define CL_VEC_DATA_TYPE_STR(type, size) type##size
#define CL_VEC_DATA_TYPE(type, size) CL_VEC_DATA_TYPE_STR(type, size)
#define CONVERT_STR(x, type) (convert_##type((x)))
#define CONVERT(x, type) CONVERT_STR(x, type)
#define CONVERT_SAT_STR(x, type) (convert_##type##_sat((x)))
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
#define CONVERT_SAT_ROUND_STR(x, type, round) (convert_##type##_sat_##round((x)))
#define CONVERT_SAT_ROUND(x, type, round) CONVERT_SAT_ROUND_STR(x, type, round)
#define VECTOR_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_offset_first_element_in_bytes
#define IMAGE_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_offset_first_element_in_bytes
#define TENSOR3D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_offset_first_element_in_bytes
#define TENSOR4D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_stride_w, \
uint name##_step_w, \
uint name##_offset_first_element_in_bytes
#define CONVERT_TO_VECTOR_STRUCT(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x)
#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0)
#define CONVERT_TO_IMAGE_STRUCT(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y)
#define CONVERT_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0)
#define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z, name##_stride_w, name##_step_w, mod_size)
#define CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0, name##_stride_w, 0, mod_size)
/** Structure to hold Vector information */
typedef struct Vector
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
} Vector;
/** Structure to hold Image information */
typedef struct Image
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
} Image;
/** Structure to hold 3D tensor information */
typedef struct Tensor3D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
} Tensor3D;
/** Structure to hold 4D tensor information */
typedef struct Tensor4D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
int stride_w; /**< Stride of the image in W dimension (in bytes) */
} Tensor4D;
/** Wrap vector information into an Vector structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source vector
* @param[in] stride_x Stride of the vector in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
*
* @return An image object
*/
inline Vector update_vector_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x)
{
Vector vector =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
};
vector.ptr += vector.offset_first_element_in_bytes + get_global_id(0) * step_x;
return vector;
}
/** Wrap image information into an Image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
*
* @return An image object
*/
inline Image update_image_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y;
return img;
}
/** Wrap 3D tensor information into an image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Image update_image_from_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return img;
}
/** Wrap 3D tensor information into an tensor structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Tensor3D update_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return tensor;
}
inline Tensor4D update_tensor4D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z, uint stride_w,
uint step_w,
uint mod_size)
{
Tensor4D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z,
.stride_w = stride_w
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + (get_global_id(2) % mod_size) * step_z + (get_global_id(2) / mod_size) * step_w;
return tensor;
}
/** Get the pointer position of a Vector
*
* @param[in] vec Pointer to the starting position of the buffer
* @param[in] x Relative X position
*/
inline __global const uchar *vector_offset(const Vector *vec, int x)
{
return vec->ptr + x * vec->stride_x;
}
/** Get the pointer position of a Image
*
* @param[in] img Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
*/
inline __global uchar *offset(const Image *img, int x, int y)
{
return img->ptr + x * img->stride_x + y * img->stride_y;
}
/** Get the pointer position of a Tensor3D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
*/
inline __global const uchar *tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z;
}
/** Get the pointer position of a Tensor4D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
* @param[in] w Relative W position
*/
inline __global const uchar *tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + w * tensor->stride_w;
}
#endif // _HELPER_H
/** Convert the given vector with round to nearest even rounding mode
*
* @param[in] x The target to be converted
* @param[in] type The target type
*
* @return The converted vector
*/
#define CONVERT_DOWN_RTE_STR(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN_RTE(x, type) CONVERT_DOWN_RTE_STR(x, type)
/** Quantize a floating-point scalar value to 8-bit asymmetric
*
* @param[in] input Input value to quantize
* @param[in] offset Quantization offset
* @param[in] scale Quantization scale
*
* @return quantized value
*/
inline uchar quantize_qasymm8(float input, float offset, float scale)
{
float out_f32 = input / scale + offset;
uchar res_u8 = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, int), uchar);
return res_u8;
}
/** Dequantize a scalar value from 8-bit asymmetric to floating-point
*
* @param[in] input Input value to quantize
* @param[in] offset Quantization offset
* @param[in] scale Quantization scale
*
* @return quantized value
*/
inline float dequantize_qasymm8(uchar input, float offset, float scale)
{
return ((float)input - offset) * scale;
}
/** Dequantize a scalar value from signed 8-bit asymmetric to floating-point
*
* @param[in] input Input value to quantize
* @param[in] offset Quantization offset
* @param[in] scale Quantization scale
*
* @return quantized value
*/
inline float dequantize_qasymm8_signed(char input, float offset, float scale)
{
return ((float)input - offset) * scale;
}
/** Quantize a vector of values from floating-point
*
* @param[in] type Output data type.
* @param[in] size Size of vector.
*
* @return quantized values
*/
#define QUANTIZE_IMPL(type, size) \
inline VEC_DATA_TYPE(type, size) quantize_##type##size(VEC_DATA_TYPE(float, size) input, float offset, float scale) \
{ \
VEC_DATA_TYPE(float, size) \
out_f32 = input / (VEC_DATA_TYPE(float, size))(scale) + (VEC_DATA_TYPE(float, size))(offset); \
VEC_DATA_TYPE(type, size) \
res = CONVERT_SAT(CONVERT_DOWN_RTE(out_f32, VEC_DATA_TYPE(int, size)), VEC_DATA_TYPE(type, size)); \
return res; \
}
/** Dequantize a vector of values to floating-point
*
* @param[in] type Input data type.
* @param[in] size Size of vector.
*
* @return dequantized values in floating point
*/
#define DEQUANTIZE_IMPL(type, size) \
inline VEC_DATA_TYPE(float, size) dequantize_##type##size(VEC_DATA_TYPE(type, size) input, float offset, float scale) \
{ \
return (CONVERT(input, VEC_DATA_TYPE(float, size)) - offset) * scale; \
}
/** Correctly-rounded-to-nearest division by a power-of-two.
*
* @param[in] size Size of vector.
*
* @return Correctly-rounded-to-nearest division by a power-of-two.
*/
#define ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_rounding_divide_by_POW2_##size(VEC_DATA_TYPE(int, size) x, VEC_DATA_TYPE(int, size) exponent) \
{ \
const VEC_DATA_TYPE(int, size) \
zero = (VEC_DATA_TYPE(int, size))0; \
const VEC_DATA_TYPE(int, size) \
one = (VEC_DATA_TYPE(int, size))1; \
VEC_DATA_TYPE(int, size) \
mask = (one << exponent) - one; \
VEC_DATA_TYPE(int, size) \
threshold = (mask >> 1) + select(zero, one, x < 0); \
return (x >> exponent) + select(zero, one, (x & mask) > threshold); \
}
/** Product of two numbers, interpreting them as fixed-point values in the interval [-1, 1),
* rounding to the nearest value, and saturating -1 * -1 to the maximum value.
*
* @param[in] size Size of vector.
*
* @return Product of two fixed-point numbers.
*/
#define ASYMM_MULT_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_mult##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
{ \
VEC_DATA_TYPE(int, size) \
overflow = a == b && a == INT_MIN; \
VEC_DATA_TYPE(long, size) \
a_64 = convert_long##size(a); \
VEC_DATA_TYPE(long, size) \
b_64 = convert_long##size(b); \
VEC_DATA_TYPE(long, size) \
ab_64 = a_64 * b_64; \
/* COMPMID-907 */ \
VEC_DATA_TYPE(int, size) \
ab_x2_high32 = convert_int##size(((ab_64 + (1 << 30)) >> 31)); \
return select(ab_x2_high32, INT_MAX, overflow); \
}
/** Calculates \f$ exp(x) \f$ for x in [-1/4, 0).
*
* @param[in] size Size of vector.
*
* @return Result in fixed-point format Q0.
*/
#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) constant_term = 1895147668; \
const VEC_DATA_TYPE(int, size) constant_1_over_3 = 715827883; \
const int k_fractional_bits = 31; \
VEC_DATA_TYPE(int, size) \
x = a + (1 << (k_fractional_bits - 3)); \
VEC_DATA_TYPE(int, size) \
x2 = ASYMM_MULT(x, x, size); \
VEC_DATA_TYPE(int, size) \
x3 = ASYMM_MULT(x2, x, size); \
VEC_DATA_TYPE(int, size) \
x4 = ASYMM_MULT(x2, x2, size); \
VEC_DATA_TYPE(int, size) \
x4_over_4 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4, 2, size); \
VEC_DATA_TYPE(int, size) \
x4_over_24_plus_x3_over_6_plus_x2 = ASYMM_MULT((x4_over_4 + x3), constant_1_over_3, size) + x2; \
VEC_DATA_TYPE(int, size) \
x4_over_24_plus_x3_over_6_plus_x2_over_2 = ASYMM_ROUNDING_DIVIDE_BY_POW2(x4_over_24_plus_x3_over_6_plus_x2, 1, size); \
return constant_term + ASYMM_MULT(constant_term, x + x4_over_24_plus_x3_over_6_plus_x2_over_2, size); \
}
/** Each bit of the result is set to the corresponding bit of either then_val or
* else_val depending on whether the corresponding bit of if_mask is set.
* Equivalent to the VBSL instruction in ARM NEON.
*
* @param[in] size Size of vector.
*
* @returns Result contaning bits from @p then_val or from @p else_val depending on corresponding bit in @p if_mask is set or not.
*/
#define ASYMM_SELECT_USING_MASK_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_select_using_mask##size(VEC_DATA_TYPE(int, size) if_mask, VEC_DATA_TYPE(int, size) then_val, VEC_DATA_TYPE(int, size) else_val) \
{ \
return (if_mask & then_val) ^ (~if_mask & else_val); \
}
/** For each element of input vector, the corresponding bits of the result item are set
* if the input item is zero.
*
* @param[in] size Size of vector.
*
* @returns Output vector with bits set when corresponding bit in @p a is zero.
*/
#define ASYMM_MASK_IF_ZERO_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_mask_if_zero##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) all_zeros = 0; \
const VEC_DATA_TYPE(int, size) all_ones = ~0; \
return select(all_zeros, all_ones, a == 0); \
}
/** For each element of input vector, the corresponding bits of the result item are set
* if the input item is non-zero.
*
* @param[in] size Size of vector.
*
* @returns Output vector with bits set when corresponding bit in @p a is non zero.
*/
#define ASYMM_MASK_IF_NON_ZERO_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_mask_if_non_zero##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) all_zeros = 0; \
const VEC_DATA_TYPE(int, size) all_ones = ~0; \
return select(all_zeros, all_ones, a != 0); \
}
#define EXP_BARREL_SHIFTER_IMPL(size) \
inline VEC_DATA_TYPE(int, size) exp_barrel_shifter##size(VEC_DATA_TYPE(int, size) result, int exponent, int fp_multiplier, int k_integer_bits, int k_fractional_bits, VEC_DATA_TYPE(int, size) remainder) \
{ \
if(k_integer_bits > exponent) \
{ \
const int k_shift_amount = k_integer_bits > exponent ? k_fractional_bits + exponent : 0; \
return ASYMM_SELECT_USING_MASK( \
ASYMM_MASK_IF_NON_ZERO(remainder & (1 << k_shift_amount), size), \
ASYMM_MULT(result, fp_multiplier, size), result, size); \
} \
\
return result; \
}
/** Calculates \f$ exp(x) \f$ for x < 0.
*
* @param[in] size Size of vector.
*
* @return Result in fixed-point format Q0.
*/
#define ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_exp_on_negative_values##size(VEC_DATA_TYPE(int, size) a, int k_integer_bits) \
{ \
const int k_fractional_bits = 31 - k_integer_bits; \
VEC_DATA_TYPE(int, size) \
k_one_quarter = 1 << (k_fractional_bits - 2); \
VEC_DATA_TYPE(int, size) \
mask = k_one_quarter - 1; \
VEC_DATA_TYPE(int, size) \
a_mod_quarter_minus_one_quarter = (a & mask) - k_one_quarter; \
VEC_DATA_TYPE(int, size) \
a_mod_quarter_minus_one_quarter_scaled = a_mod_quarter_minus_one_quarter << k_integer_bits; \
VEC_DATA_TYPE(int, size) \
result = ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a_mod_quarter_minus_one_quarter_scaled, size); \
VEC_DATA_TYPE(int, size) \
remainder = a_mod_quarter_minus_one_quarter - a; \
\
result = EXP_BARREL_SHIFTER(result, -2, 1672461947, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, -1, 1302514674, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +0, 790015084, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +1, 290630308, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +2, 39332535, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +3, 720401, k_integer_bits, k_fractional_bits, remainder, size); \
result = EXP_BARREL_SHIFTER(result, +4, 242, k_integer_bits, k_fractional_bits, remainder, size); \
\
if(k_integer_bits > 5) \
{ \
const VEC_DATA_TYPE(int, size) clamp = -(1 << (k_fractional_bits + 5)); \
result = ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_NON_ZERO(a < clamp, size), 0, result, size); \
} \
\
const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
return ASYMM_SELECT_USING_MASK(ASYMM_MASK_IF_ZERO(a, size), Q0_one, result, size); \
}
/** Calculates the product of a integer value by a power of two, with either a positive exponent
* (equivalent to an arithmetic left shift, saturating) or a negative exponent
* (equivalent to an arithmetic right shift, rounding to nearest).
*
* @param[in] size Size of vector.
*
* @return Arithmetic left or right shift.
*/
#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_saturating_rounding_mult_by_pow2##size(VEC_DATA_TYPE(int, size) x, int exponent) \
{ \
if(exponent < 0) \
{ \
return ASYMM_ROUNDING_DIVIDE_BY_POW2(x, -exponent, size); \
} \
\
const VEC_DATA_TYPE(int, size) min = INT_MIN; \
const VEC_DATA_TYPE(int, size) max = INT_MAX; \
int threshold = ((1 << (31 - exponent)) - 1); \
VEC_DATA_TYPE(int, size) \
positive_mask = ASYMM_MASK_IF_NON_ZERO(x > threshold, size); \
VEC_DATA_TYPE(int, size) \
negative_mask = ASYMM_MASK_IF_NON_ZERO(x < -threshold, size); \
VEC_DATA_TYPE(int, size) \
result = x << exponent; \
result = ASYMM_SELECT_USING_MASK(positive_mask, max, result, size); \
result = ASYMM_SELECT_USING_MASK(negative_mask, min, result, size); \
return result; \
}
/** Calculates (a+b)/2, rounded to the nearest integer.
* Equivalent to VRHADD in the ARM NEON instruction set.
*
* @param[in] size Size of vector.
*
* @return (a+b)/2, rounded to the nearest integer.
*/
#define ASYMM_ROUNDING_HALF_SUM_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_rounding_half_sum##size(VEC_DATA_TYPE(int, size) a, VEC_DATA_TYPE(int, size) b) \
{ \
VEC_DATA_TYPE(long, size) \
a64 = convert_long##size(a); \
VEC_DATA_TYPE(long, size) \
b64 = convert_long##size(b); \
VEC_DATA_TYPE(long, size) \
sum = a64 + b64; \
const VEC_DATA_TYPE(long, size) one = 1; \
const VEC_DATA_TYPE(long, size) minus_one = -1; \
VEC_DATA_TYPE(long, size) \
sign = select(minus_one, one, sum >= 0); \
return convert_int##size((sum + sign) / 2); \
}
/** Calculates \f$ 1 / (1 + x) \f$ for x in (0, 1).
*
* @param[in] size Size of vector.
*
* @return Result in fixed-point format Q0.
*/
#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(VEC_DATA_TYPE(int, size) a) \
{ \
const VEC_DATA_TYPE(int, size) Q0_one = INT_MAX; \
const VEC_DATA_TYPE(int, size) Q2_one = 1 << (31 - 2); \
VEC_DATA_TYPE(int, size) \
half_denominator = ASYMM_ROUNDING_HALF_SUM(a, Q0_one, size); \
const VEC_DATA_TYPE(int, size) Q2_48_over_17 = 1515870810; \
const VEC_DATA_TYPE(int, size) Q2_neg_32_over_17 = -1010580540; \
VEC_DATA_TYPE(int, size) \
x = Q2_48_over_17 + ASYMM_MULT(half_denominator, Q2_neg_32_over_17, size); \
for(int i = 0; i < 3; i++) \
{ \
VEC_DATA_TYPE(int, size) \
half_denominator_times_x = ASYMM_MULT(half_denominator, x, size); \
VEC_DATA_TYPE(int, size) \
one_minus_half_denominator_times_x = Q2_one - half_denominator_times_x; \
VEC_DATA_TYPE(int, size) \
tmp = ASYMM_MULT(x, one_minus_half_denominator_times_x, size); \
x = x + ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(tmp, 2, size); \
} \
return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, 1, size); \
}
/** Considering the integer value as fixed-point, change the number of integer bits and update value accordingly.
*
* @param[in] size Size of vector.
*
* @return Rescaled value.
*/
#define ASYMM_RESCALE_IMPL(size) \
inline VEC_DATA_TYPE(int, size) asymm_rescale##size(VEC_DATA_TYPE(int, size) value, int src_integer_bits, int dst_integer_bits) \
{ \
int exponent = src_integer_bits - dst_integer_bits; \
return ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(value, exponent, size); \
}
#define QUANTIZE_STR(input, offset, scale, type, size) quantize_##type##size(input, offset, scale)
#define QUANTIZE(input, offset, scale, type, size) QUANTIZE_STR(input, offset, scale, type, size)
#define DEQUANTIZE_STR(input, offset, scale, type, size) dequantize_##type##size(input, offset, scale)
#define DEQUANTIZE(input, offset, scale, type, size) DEQUANTIZE_STR(input, offset, scale, type, size)
#define ASYMM_ROUNDING_DIVIDE_BY_POW2(x, exponent, size) asymm_rounding_divide_by_POW2_##size(x, exponent)
#define ASYMM_MULT(a, b, size) asymm_mult##size(a, b)
#define ASYMM_MULT_BY_QUANT_MULTIPLIER_GREATER_THAN_ONE(x, quantized_multiplier, left_shift, size) \
ASYMM_MULT(x *((VEC_DATA_TYPE(int, size))(1) << (-left_shift)), quantized_multiplier, size)
#define ASYMM_MULT_BY_QUANT_MULTIPLIER_LESS_THAN_ONE(x, quantized_multiplier, right_shift, size) \
ASYMM_ROUNDING_DIVIDE_BY_POW2(ASYMM_MULT(x, quantized_multiplier, size), right_shift, size)
#define ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL(a, size) asymm_exp_on_interval_between_negative_one_quarter_and_0_excl##size(a)
#define ASYMM_SELECT_USING_MASK(if_mask, then_val, else_val, size) asymm_select_using_mask##size(if_mask, then_val, else_val)
#define ASYMM_MASK_IF_ZERO(a, size) asymm_mask_if_zero##size(a)
#define ASYMM_MASK_IF_NON_ZERO(a, size) asymm_mask_if_non_zero##size(a)
#define EXP_BARREL_SHIFTER(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder, size) exp_barrel_shifter##size(result, exponent, fp_multiplier, k_integer_bits, k_fractional_bits, remainder)
#define ASYMM_EXP_ON_NEGATIVE_VALUES(a, k_integer_bits, size) asymm_exp_on_negative_values##size(a, k_integer_bits)
#define ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1(a, size) asymm_one_over_one_plus_x_for_x_in_0_1##size(a)
#define ASYMM_SATURATING_ROUNDING_MULT_BY_POW2(x, exponent, size) asymm_saturating_rounding_mult_by_pow2##size(x, exponent)
#define ASYMM_ROUNDING_HALF_SUM(a, b, size) asymm_rounding_half_sum##size(a, b)
#define ASYMM_RESCALE(value, src_integer_bits, dst_integer_bits, size) asymm_rescale##size(value, src_integer_bits, dst_integer_bits)
QUANTIZE_IMPL(uchar, 1)
QUANTIZE_IMPL(char, 1)
QUANTIZE_IMPL(uint, 1)
QUANTIZE_IMPL(int, 1)
QUANTIZE_IMPL(uchar, 4)
QUANTIZE_IMPL(ushort, 4)
QUANTIZE_IMPL(short, 4)
QUANTIZE_IMPL(uchar, 16)
QUANTIZE_IMPL(char, 16)
QUANTIZE_IMPL(ushort, 16)
QUANTIZE_IMPL(short, 16)
QUANTIZE_IMPL(uint, 16)
QUANTIZE_IMPL(int, 16)
DEQUANTIZE_IMPL(uchar, 1)
DEQUANTIZE_IMPL(char, 1)
DEQUANTIZE_IMPL(uint, 1)
DEQUANTIZE_IMPL(int, 1)
DEQUANTIZE_IMPL(uchar, 4)
DEQUANTIZE_IMPL(ushort, 4)
DEQUANTIZE_IMPL(short, 4)
DEQUANTIZE_IMPL(uchar, 16)
DEQUANTIZE_IMPL(char, 16)
DEQUANTIZE_IMPL(ushort, 16)
DEQUANTIZE_IMPL(short, 16)
DEQUANTIZE_IMPL(uint, 16)
DEQUANTIZE_IMPL(int, 16)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(1)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(2)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(4)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(8)
ASYMM_ROUNDING_DIVIDE_BY_POW2_IMPL(16)
ASYMM_MULT_IMPL(1)
ASYMM_MULT_IMPL(2)
ASYMM_MULT_IMPL(4)
ASYMM_MULT_IMPL(8)
ASYMM_MULT_IMPL(16)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(2)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(4)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(8)
ASYMM_EXP_ON_INTERVAL_BETWEEN_NEGATIVE_ONE_QUARTER_AND_0_EXCL_IMPL(16)
ASYMM_SELECT_USING_MASK_IMPL(2)
ASYMM_SELECT_USING_MASK_IMPL(4)
ASYMM_SELECT_USING_MASK_IMPL(8)
ASYMM_SELECT_USING_MASK_IMPL(16)
ASYMM_MASK_IF_ZERO_IMPL(2)
ASYMM_MASK_IF_ZERO_IMPL(4)
ASYMM_MASK_IF_ZERO_IMPL(8)
ASYMM_MASK_IF_ZERO_IMPL(16)
ASYMM_MASK_IF_NON_ZERO_IMPL(2)
ASYMM_MASK_IF_NON_ZERO_IMPL(4)
ASYMM_MASK_IF_NON_ZERO_IMPL(8)
ASYMM_MASK_IF_NON_ZERO_IMPL(16)
EXP_BARREL_SHIFTER_IMPL(2)
EXP_BARREL_SHIFTER_IMPL(4)
EXP_BARREL_SHIFTER_IMPL(8)
EXP_BARREL_SHIFTER_IMPL(16)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(2)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(4)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(8)
ASYMM_EXP_ON_NEGATIVE_VALUES_IMPL(16)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(2)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(4)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(8)
ASYMM_SATURATING_ROUNDING_MULT_BY_POW2_IMPL(16)
ASYMM_ROUNDING_HALF_SUM_IMPL(2)
ASYMM_ROUNDING_HALF_SUM_IMPL(4)
ASYMM_ROUNDING_HALF_SUM_IMPL(8)
ASYMM_ROUNDING_HALF_SUM_IMPL(16)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(2)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(4)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(8)
ASYMM_ONE_OVER_ONE_PLUS_X_FOR_X_IN_0_1_IMPL(16)
ASYMM_RESCALE_IMPL(2)
ASYMM_RESCALE_IMPL(4)
ASYMM_RESCALE_IMPL(8)
ASYMM_RESCALE_IMPL(16)
#endif // ARM_COMPUTE_HELPERS_ASYMM_H
/** Clamps the given coordinates to the borders according to the border size.
*
* @param[in] coords Vector of 2D coordinates to clamp. Even positions are X coords, odd positions are Y coords.
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] border_size Border size of the image
*
*/
inline const float8 clamp_to_border_with_size_quantized(float8 coords, const float width, const float height, const float border_size)
{
const float4 clamped_x = clamp(coords.even, 0.0f - border_size, width - 1 + border_size);
const float4 clamped_y = clamp(coords.odd, 0.0f - border_size, height - 1 + border_size);
return (float8)(clamped_x.s0, clamped_y.s0, clamped_x.s1, clamped_y.s1, clamped_x.s2, clamped_y.s2, clamped_x.s3, clamped_y.s3);
}
/* FIXME(COMPMID-682): Clamp border properly in UNDEFINED border mode in Warp, Scale, Remap */
/** Clamps the given coordinates to the borders.
*
* @param[in] coords Vector of 2D coordinates to clamp. Even positions are X coords, odd positions are Y coords.
* @param[in] width Width of the image
* @param[in] height Height of the image
*
*/
inline const float8 clamp_to_border_quantized(float8 coords, const float width, const float height)
{
return clamp_to_border_with_size_quantized(coords, width, height, 1);
}
/** Given a texel coordinates this function will return the following array of coordinates:
* [ P, right neighbour, below neighbour, below right neighbour ]
*
* @note No checks to see if the coordinates are out of the image are done here.
*
* @param[in] coord Input coordinates
*
* @return vector of 8 floats with the coordinates, even positions are x and odd y.
*/
inline const float8 get_neighbour_coords_quantized(const float2 coord)
{
return (float8)(/*tl*/ coord.s0, coord.s1, /*tr*/ coord.s0 + 1, coord.s1, /*bl*/ coord.s0, coord.s1 + 1, /*br*/ coord.s0 + 1, coord.s1 + 1);
}
/** Returns the current thread coordinates. */
inline const float2 get_current_coords_quantized()
{
return (float2)(get_global_id(0) * 4, get_global_id(1));
}
/** Computes the bilinear interpolation for each set of coordinates in the vector coords and returns the values
*
* @param[in] in Pointer to the source image.
* @param[in] coords Vector of four 2D coordinates. Even pos is x and odd y.
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] border_size Border size
* @param[in] scale Scale value
* @param[in] offset_qasymm Offset value
*/
inline const VEC_DATA_TYPE(DATA_TYPE, 4) bilinear_interpolate_with_border_quantized(const Image *in, const float8 coords, const float width, const float height, const float border_size,
const float scale, const int offset_qasymm)
{
// If any of the 4 texels is out of the image's boundaries we use the border value (REPLICATE or CONSTANT) for any texel out of the image.
// Sets the 4x4 coordinates for each of the four input texels
const float8 fc = floor(coords);
const float16 c1 = (float16)(
clamp_to_border_with_size_quantized(get_neighbour_coords_quantized((float2)(fc.s0, fc.s1)), width, height, border_size),
clamp_to_border_with_size_quantized(get_neighbour_coords_quantized((float2)(fc.s2, fc.s3)), width, height, border_size));
const float16 c2 = (float16)(
clamp_to_border_with_size_quantized(get_neighbour_coords_quantized((float2)(fc.s4, fc.s5)), width, height, border_size),
clamp_to_border_with_size_quantized(get_neighbour_coords_quantized((float2)(fc.s6, fc.s7)), width, height, border_size));
// Loads the values from the input image
const int16 t = (int16)(
/* tl, tr, bl, br */
* ((__global DATA_TYPE *)offset(in, c1.s0, c1.s1)), *((__global DATA_TYPE *)offset(in, c1.s2, c1.s3)),
*((__global DATA_TYPE *)offset(in, c1.s4, c1.s5)), *((__global DATA_TYPE *)offset(in, c1.s6, c1.s7)),
*((__global DATA_TYPE *)offset(in, c1.s8, c1.s9)), *((__global DATA_TYPE *)offset(in, c1.sa, c1.sb)),
*((__global DATA_TYPE *)offset(in, c1.sc, c1.sd)), *((__global DATA_TYPE *)offset(in, c1.se, c1.sf)),
*((__global DATA_TYPE *)offset(in, c2.s0, c2.s1)), *((__global DATA_TYPE *)offset(in, c2.s2, c2.s3)),
*((__global DATA_TYPE *)offset(in, c2.s4, c2.s5)), *((__global DATA_TYPE *)offset(in, c2.s6, c2.s7)),
*((__global DATA_TYPE *)offset(in, c2.s8, c2.s9)), *((__global DATA_TYPE *)offset(in, c2.sa, c2.sb)),
*((__global DATA_TYPE *)offset(in, c2.sc, c2.sd)), *((__global DATA_TYPE *)offset(in, c2.se, c2.sf)));
const float16 inf32 = convert_float16(t - (int16)offset_qasymm) * (float16)scale;
const float8 a = coords - fc;
const float8 b = ((float8)(1.f)) - a;
const float4 fr = (float4)(
((inf32.s0 * b.s0 * b.s1) + (inf32.s1 * a.s0 * b.s1) + (inf32.s2 * b.s0 * a.s1) + (inf32.s3 * a.s0 * a.s1)),
((inf32.s4 * b.s2 * b.s3) + (inf32.s5 * a.s2 * b.s3) + (inf32.s6 * b.s2 * a.s3) + (inf32.s7 * a.s2 * a.s3)),
((inf32.s8 * b.s4 * b.s5) + (inf32.s9 * a.s4 * b.s5) + (inf32.sa * b.s4 * a.s5) + (inf32.sb * a.s4 * a.s5)),
((inf32.sc * b.s6 * b.s7) + (inf32.sd * a.s6 * b.s7) + (inf32.se * b.s6 * a.s7) + (inf32.sf * a.s6 * a.s7)));
const VEC_DATA_TYPE(DATA_TYPE, 4) res = CONVERT_SAT(convert_int4_sat_rtp(fr / scale) + offset_qasymm, VEC_DATA_TYPE(DATA_TYPE, 4));
return res;
}
/* FIXME(COMPMID-682): Clamp border properly in UNDEFINED border mode in Warp, Scale, Remap */
/** Computes the bilinear interpolation for each set of coordinates in the vector coords and returns the values
*
* @param[in] in Pointer to the source image.
* @param[in] coords Vector of four 2D coordinates. Even pos is x and odd y.
* @param[in] width Width of the image
* @param[in] height Height of the image
* @param[in] scale Scale value
* @param[in] offset_qasymm Offset value
*/
inline const VEC_DATA_TYPE(DATA_TYPE, 4) bilinear_interpolate_quantized(const Image *in, const float8 coords, const float width, const float height, const float scale, const int offset_qasymm)
{
return bilinear_interpolate_with_border_quantized(in, coords, width, height, 1, scale, offset_qasymm);
}
)"