blob: 7b991ddf9832a995a166df8a4beb77f06ac4fcc9 [file] [log] [blame]
R"(
/*
* Copyright (c) 2017-2018 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Copyright (c) 2016-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPER_H
#define ARM_COMPUTE_HELPER_H
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_accumulate_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#if defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#pragma OPENCL EXTENSION cl_arm_printf : enable
#endif // defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#define GPU_ARCH_MIDGARD 0x100
#define GPU_ARCH_BIFROST 0x200
/** Concatenate two inputs.
*
* @param[in] a The first input to be concatenated
* @param[in] b The second input to be concatenated
*
* @return The concatenated output
*/
#define CONCAT(a, b) a##b
/** Expand the given vector
*
* @param[in] x The vector to be expanded
*
* @return The expanded output
*/
#define EXPAND(x) x
/** Clamp the given value between an upper and lower bound.
*
* @param[in] x The value to be clamped
* @param[in] min_val The lower bound
* @param[in] max_val The upper bound
*
* @return The clamped value.
*/
#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
/** REVn reverses the given vector whose size is n.
* @name REVn
*
* @param[in] x The vector to be reversed
*
* @return The reversed vector
* @{
*/
#define REV1(x) ((x))
#define REV2(x) ((x).s10)
#define REV3(x) ((x).s210)
#define REV4(x) ((x).s3210)
#define REV8(x) ((x).s76543210)
#define REV16(x) ((x).sFEDCBA9876543210)
/** @} */ // end of group REVn
/** Reverse the given vector.
* @name REVERSE
*
* @param[in] x The vector to be reversed
* @param[in] s The size of the vector
*
* @return The reversed vector
* @{
*/
#define REVERSE_STR(x, s) REV##s((x))
#define REVERSE(x, s) REVERSE_STR(x, s)
/** @} */ // end of group REVERSE
/** Circular-right-shift (rotate-right) the vector of size s by the amount of n.
* @name ROTs_n
*
* @param[in] x The vector to be shifted
*
* @return The shifted vector
* @{
*/
#define ROT1_0(x) ((x))
#define ROT2_0(x) ((x))
#define ROT2_1(x) ((x).s10)
#define ROT3_0(x) ((x))
#define ROT3_1(x) ((x).s201)
#define ROT3_2(x) ((x).s120)
#define ROT4_0(x) ((x))
#define ROT4_1(x) ((x).s3012)
#define ROT4_2(x) ((x).s2301)
#define ROT4_3(x) ((x).s1230)
#define ROT8_0(x) ((x))
#define ROT8_1(x) ((x).s70123456)
#define ROT8_2(x) ((x).s67012345)
#define ROT8_3(x) ((x).s56701234)
#define ROT8_4(x) ((x).s45670123)
#define ROT8_5(x) ((x).s34567012)
#define ROT8_6(x) ((x).s23456701)
#define ROT8_7(x) ((x).s12345670)
#define ROT16_0(x) ((x))
#define ROT16_1(x) ((x).sF0123456789ABCDE)
#define ROT16_2(x) ((x).sEF0123456789ABCD)
#define ROT16_3(x) ((x).sDEF0123456789ABC)
#define ROT16_4(x) ((x).sCDEF0123456789AB)
#define ROT16_5(x) ((x).sBCDEF0123456789A)
#define ROT16_6(x) ((x).sABCDEF0123456789)
#define ROT16_7(x) ((x).s9ABCDEF012345678)
#define ROT16_8(x) ((x).s89ABCDEF01234567)
#define ROT16_9(x) ((x).s789ABCDEF0123456)
#define ROT16_10(x) ((x).s6789ABCDEF012345)
#define ROT16_11(x) ((x).s56789ABCDEF01234)
#define ROT16_12(x) ((x).s456789ABCDEF0123)
#define ROT16_13(x) ((x).s3456789ABCDEF012)
#define ROT16_14(x) ((x).s23456789ABCDEF01)
#define ROT16_15(x) ((x).s123456789ABCDEF0)
/** @} */ // end of group ROTs_n
/** Circular-right-shift (rotate-right) the given vector by the given amount.
* @name ROTATE
*
* @param[in] x The vector to be shifted
* @param[in] s The size of the vector
* @param[in] n The amount to be shifted
*
* @return The shifted vector
* @{
*/
#define ROTATE_STR(x, s, n) ROT##s##_##n(x)
#define ROTATE(x, s, n) ROTATE_STR(x, s, n)
/** @} */ // end of group ROTATE
/** Creates a vector of size n filled with offset values corresponding to the location of each element.
* @name V_OFFSn
*
* @param[in] dt The data type of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define V_OFFS1(dt) (dt)(0)
#define V_OFFS2(dt) (dt)(0, 1)
#define V_OFFS3(dt) (dt)(0, 1, 3)
#define V_OFFS4(dt) (dt)(0, 1, 2, 3)
#define V_OFFS8(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7)
#define V_OFFS16(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
/** @} */ // end of group V_OFFSn
/** Create a vector filled with offset values corresponding to the location of each element.
* @name VEC_OFFS
*
* @param[in] dt The data type of the output vector
* @param[in] s The size of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define VEC_OFFS_STR(dt, s) V_OFFS##s(dt)
#define VEC_OFFS(dt, s) VEC_OFFS_STR(dt, s)
/** @} */ // end of group VEC_OFFS
#define VLOAD_STR(size) vload##size
#define VLOAD(size) VLOAD_STR(size)
#define VSTORE_STR(size) vstore##size
#define VSTORE(size) VSTORE_STR(size)
#define float1 float
#define half1 half
#define char1 char
#define uchar1 uchar
#define short1 short
#define ushort1 ushort
#define int1 int
#define uint1 uint
#define long1 long
#define ulong1 ulong
#define double1 double
#define vload1(OFFSET, PTR) *(OFFSET + PTR)
#define vstore1(DATA, OFFSET, PTR) *(OFFSET + PTR) = DATA
// Convert built-in functions with _sat modifier are not supported in floating point so we create defines
// without _sat to overcome this issue
#define convert_float_sat convert_float
#define convert_float1_sat convert_float
#define convert_float2_sat convert_float2
#define convert_float3_sat convert_float3
#define convert_float4_sat convert_float4
#define convert_float8_sat convert_float8
#define convert_float16_sat convert_float16
#define convert_half_sat convert_float
#define convert_half1_sat convert_half
#define convert_half2_sat convert_half2
#define convert_half3_sat convert_half3
#define convert_half4_sat convert_half4
#define convert_half8_sat convert_half8
#define convert_half16_sat convert_half16
#define convert_float1 convert_float
#define convert_half1 convert_half
#define convert_char1 convert_char
#define convert_uchar1 convert_uchar
#define convert_short1 convert_short
#define convert_ushort1 convert_ushort
#define convert_int1 convert_int
#define convert_uint1 convert_uint
#define convert_long1 convert_long
#define convert_ulong1 convert_ulong
#define convert_double1 convert_double
#define convert_char1_sat convert_char_sat
#define convert_uchar1_sat convert_uchar_sat
#define convert_short1_sat convert_short_sat
#define convert_ushort1_sat convert_ushort_sat
#define convert_int1_sat convert_int_sat
#define convert_uint1_sat convert_uint_sat
#define convert_long1_sat convert_long_sat
#define convert_ulong1_sat convert_ulong_sat
#define convert_double1_sat convert_double_sat
#define VEC_DATA_TYPE_STR(type, size) type##size
#define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)
#define CL_VEC_DATA_TYPE_STR(type, size) type##size
#define CL_VEC_DATA_TYPE(type, size) CL_VEC_DATA_TYPE_STR(type, size)
#define CONVERT_STR(x, type) (convert_##type((x)))
#define CONVERT(x, type) CONVERT_STR(x, type)
#define CONVERT_SAT_STR(x, type) (convert_##type##_sat((x)))
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
#define CONVERT_SAT_ROUND_STR(x, type, round) (convert_##type##_sat_##round((x)))
#define CONVERT_SAT_ROUND(x, type, round) CONVERT_SAT_ROUND_STR(x, type, round)
#define VECTOR_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_offset_first_element_in_bytes
#define IMAGE_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_offset_first_element_in_bytes
#define TENSOR3D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_offset_first_element_in_bytes
#define TENSOR4D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_stride_w, \
uint name##_step_w, \
uint name##_offset_first_element_in_bytes
#define CONVERT_TO_VECTOR_STRUCT(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x)
#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0)
#define CONVERT_TO_IMAGE_STRUCT(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y)
#define CONVERT_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0)
#define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z, name##_stride_w, name##_step_w, mod_size)
#define CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0, name##_stride_w, 0, mod_size)
/** Structure to hold Vector information */
typedef struct Vector
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
} Vector;
/** Structure to hold Image information */
typedef struct Image
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
} Image;
/** Structure to hold 3D tensor information */
typedef struct Tensor3D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
} Tensor3D;
/** Structure to hold 4D tensor information */
typedef struct Tensor4D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
int stride_w; /**< Stride of the image in W dimension (in bytes) */
} Tensor4D;
/** Wrap vector information into an Vector structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source vector
* @param[in] stride_x Stride of the vector in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
*
* @return An image object
*/
inline Vector update_vector_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x)
{
Vector vector =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
};
vector.ptr += vector.offset_first_element_in_bytes + get_global_id(0) * step_x;
return vector;
}
/** Wrap image information into an Image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
*
* @return An image object
*/
inline Image update_image_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y;
return img;
}
/** Wrap 3D tensor information into an image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Image update_image_from_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return img;
}
/** Wrap 3D tensor information into an tensor structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Tensor3D update_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return tensor;
}
inline Tensor4D update_tensor4D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z, uint stride_w,
uint step_w,
uint mod_size)
{
Tensor4D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z,
.stride_w = stride_w
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + (get_global_id(2) % mod_size) * step_z + (get_global_id(2) / mod_size) * step_w;
return tensor;
}
/** Get the pointer position of a Vector
*
* @param[in] vec Pointer to the starting position of the buffer
* @param[in] x Relative X position
*/
inline __global const uchar *vector_offset(const Vector *vec, int x)
{
return vec->ptr + x * vec->stride_x;
}
/** Get the pointer position of a Image
*
* @param[in] img Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
*/
inline __global uchar *offset(const Image *img, int x, int y)
{
return img->ptr + x * img->stride_x + y * img->stride_y;
}
/** Get the pointer position of a Tensor3D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
*/
inline __global const uchar *tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z;
}
/** Get the pointer position of a Tensor4D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
* @param[in] w Relative W position
*/
inline __global const uchar *tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + w * tensor->stride_w;
}
#endif // _HELPER_H
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_TYPES_H
#define ARM_COMPUTE_TYPES_H
/** 2D Coordinates structure */
typedef struct Coordinates2D
{
int x; /**< The x coordinate. */
int y; /**< The y coordinate. */
} Coordinates2D;
/* Keypoint struct */
typedef struct Keypoint
{
int x; /**< The x coordinate. */
int y; /**< The y coordinate. */
float strength; /**< The strength of the keypoint. Its definition is specific to the corner detector. */
float scale; /**< Initialized to 0 by corner detectors. */
float orientation; /**< Initialized to 0 by corner detectors. */
int tracking_status; /**< A zero indicates a lost point. Initialized to 1 by corner detectors. */
float error; /**< A tracking method specific error. Initialized to 0 by corner detectors. */
} Keypoint;
/** Detection window struct */
typedef struct DetectionWindow
{
ushort x; /**< Top-left x coordinate */
ushort y; /**< Top-left y coordinate */
ushort width; /**< Width of the detection window */
ushort height; /**< Height of the detection window */
ushort idx_class; /**< Index of the class */
float score; /**< Confidence value for the detection window */
} DetectionWindow;
#endif // ARM_COMPUTE_TYPES_H
#if defined(CELL_WIDTH) && defined(CELL_HEIGHT) && defined(NUM_BINS) && defined(PHASE_SCALE)
/** This OpenCL kernel computes the HOG orientation binning
*
* @attention The following variables must be passed at compile time:
*
* -# -DCELL_WIDTH = Width of the cell
* -# -DCELL_HEIGHT = height of the cell
* -# -DNUM_BINS = Number of bins for each cell
* -# -DPHASE_SCALE = Scale factor used to evaluate the index of the local HOG
*
* @note Each work-item computes a single cell
*
* @param[in] mag_ptr Pointer to the source image which stores the magnitude of the gradient for each pixel. Supported data types: S16
* @param[in] mag_stride_x Stride of the magnitude image in X dimension (in bytes)
* @param[in] mag_step_x mag_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mag_stride_y Stride of the magnitude image in Y dimension (in bytes)
* @param[in] mag_step_y mag_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] mag_offset_first_element_in_bytes The offset of the first element in the magnitude image
* @param[in] phase_ptr Pointer to the source image which stores the phase of the gradient for each pixel. Supported data types: U8
* @param[in] phase_stride_x Stride of the phase image in X dimension (in bytes)
* @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] phase_stride_y Stride of the the phase image in Y dimension (in bytes)
* @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] phase_offset_first_element_in_bytes The offset of the first element in the the phase image
* @param[out] dst_ptr Pointer to the destination image which stores the local HOG for each cell Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
* @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
*/
__kernel void hog_orientation_binning(IMAGE_DECLARATION(mag),
IMAGE_DECLARATION(phase),
IMAGE_DECLARATION(dst))
{
float bins[NUM_BINS] = { 0 };
// Compute address for the magnitude and phase images
Image mag = CONVERT_TO_IMAGE_STRUCT(mag);
Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
__global uchar *mag_row_ptr = mag.ptr;
__global uchar *phase_row_ptr = phase.ptr;
for(int yc = 0; yc < CELL_HEIGHT; ++yc)
{
int xc = 0;
for(; xc <= (CELL_WIDTH - 4); xc += 4)
{
// Load magnitude and phase values
const float4 mag_f32 = convert_float4(vload4(0, (__global short *)mag_row_ptr + xc));
float4 phase_f32 = convert_float4(vload4(0, phase_row_ptr + xc));
// Scale phase: phase * scale + 0.5f
phase_f32 = (float4)0.5f + phase_f32 * (float4)PHASE_SCALE;
// Compute histogram index.
int4 hidx_s32 = convert_int4(phase_f32);
// Compute magnitude weights (w0 and w1)
const float4 hidx_f32 = convert_float4(hidx_s32);
// w1 = phase_f32 - hidx_s32
const float4 w1_f32 = phase_f32 - hidx_f32;
// w0 = 1.0 - w1
const float4 w0_f32 = (float4)1.0f - w1_f32;
// Calculate the weights for splitting vote
const float4 mag_w0_f32 = mag_f32 * w0_f32;
const float4 mag_w1_f32 = mag_f32 * w1_f32;
// Weighted vote between 2 bins
// Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
// Bin 0
bins[hidx_s32.s0] += mag_w0_f32.s0;
bins[hidx_s32.s1] += mag_w0_f32.s1;
bins[hidx_s32.s2] += mag_w0_f32.s2;
bins[hidx_s32.s3] += mag_w0_f32.s3;
hidx_s32 += (int4)1;
// Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
// Bin1
bins[hidx_s32.s0] += mag_w1_f32.s0;
bins[hidx_s32.s1] += mag_w1_f32.s1;
bins[hidx_s32.s2] += mag_w1_f32.s2;
bins[hidx_s32.s3] += mag_w1_f32.s3;
}
// Left over computation
for(; xc < CELL_WIDTH; xc++)
{
const float mag_value = *((__global short *)mag_row_ptr + xc);
const float phase_value = *(phase_row_ptr + xc) * (float)PHASE_SCALE + 0.5f;
const float w1 = phase_value - floor(phase_value);
// The quantised phase is the histogram index [0, NUM_BINS - 1]
// Check limit of histogram index. If hidx == NUM_BINS, hidx = 0
const uint hidx = (uint)(phase_value) % NUM_BINS;
// Weighted vote between 2 bins
bins[hidx] += mag_value * (1.0f - w1);
bins[(hidx + 1) % NUM_BINS] += mag_value * w1;
}
// Point to the next row of magnitude and phase images
mag_row_ptr += mag_stride_y;
phase_row_ptr += phase_stride_y;
}
// Compute address for the destination image
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Store the local HOG in the global memory
int xc = 0;
for(; xc <= (NUM_BINS - 4); xc += 4)
{
float4 values = vload4(0, bins + xc);
vstore4(values, 0, ((__global float *)dst.ptr) + xc);
}
// Left over stores
for(; xc < NUM_BINS; ++xc)
{
((__global float *)dst.ptr)[xc] = bins[xc];
}
}
#endif /* CELL_WIDTH and CELL_HEIGHT and NUM_BINS and PHASE_SCALE */
#if defined(NUM_CELLS_PER_BLOCK_HEIGHT) && defined(NUM_BINS_PER_BLOCK_X) && defined(NUM_BINS_PER_BLOCK) && defined(HOG_NORM_TYPE) && defined(L2_HYST_THRESHOLD)
#ifndef L2_NORM
#error The value of enum class HOGNormType::L2_NORM has not be passed to the OpenCL kernel
#endif /* not L2_NORM */
#ifndef L2HYS_NORM
#error The value of enum class HOGNormType::L2HYS_NORM has not be passed to the OpenCL kernel
#endif /* not L2HYS_NORM */
#ifndef L1_NORM
#error The value of enum class HOGNormType::L1_NORM has not be passed to the OpenCL kernel
#endif /* not L1_NORM */
/** This OpenCL kernel computes the HOG block normalization
*
* @attention The following variables must be passed at compile time:
*
* -# -DNUM_CELLS_PER_BLOCK_HEIGHT = Number of cells for each block
* -# -DNUM_BINS_PER_BLOCK_X = Number of bins for each block along the X direction
* -# -DNUM_BINS_PER_BLOCK = Number of bins for each block
* -# -DHOG_NORM_TYPE = Normalization type
* -# -DL2_HYST_THRESHOLD = Threshold used for L2HYS_NORM normalization method
* -# -DL2_NORM = Value of the enum class HOGNormType::L2_NORM
* -# -DL2HYS_NORM = Value of the enum class HOGNormType::L2HYS_NORM
* -# -DL1_NORM = Value of the enum class HOGNormType::L1_NORM
*
* @note Each work-item computes a single block
*
* @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] dst_ptr Pointer to the destination image which stores the normlized HOG Supported data types: F32. Number of channels supported: equal to the number of histogram bins per block
* @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
*/
__kernel void hog_block_normalization(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
float sum = 0.0f;
float4 sum_f32 = (float4)(0.0f);
// Compute address for the source and destination tensor
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
for(size_t yc = 0; yc < NUM_CELLS_PER_BLOCK_HEIGHT; ++yc)
{
const __global float *hist_ptr = (__global float *)(src.ptr + yc * src_stride_y);
int xc = 0;
for(; xc <= (NUM_BINS_PER_BLOCK_X - 16); xc += 16)
{
const float4 val0 = vload4(0, hist_ptr + xc + 0);
const float4 val1 = vload4(0, hist_ptr + xc + 4);
const float4 val2 = vload4(0, hist_ptr + xc + 8);
const float4 val3 = vload4(0, hist_ptr + xc + 12);
#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
// Compute val^2 for L2_NORM or L2HYS_NORM
sum_f32 += val0 * val0;
sum_f32 += val1 * val1;
sum_f32 += val2 * val2;
sum_f32 += val3 * val3;
#else /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
// Compute |val| for L1_NORM
sum_f32 += fabs(val0);
sum_f32 += fabs(val1);
sum_f32 += fabs(val2);
sum_f32 += fabs(val3);
#endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
// Store linearly the input values un-normalized in the output image. These values will be reused for the normalization.
// This approach will help us to be cache friendly in the next for loop where the normalization will be done because all the values
// will be accessed consecutively
vstore4(val0, 0, ((__global float *)dst.ptr) + xc + 0 + yc * NUM_BINS_PER_BLOCK_X);
vstore4(val1, 0, ((__global float *)dst.ptr) + xc + 4 + yc * NUM_BINS_PER_BLOCK_X);
vstore4(val2, 0, ((__global float *)dst.ptr) + xc + 8 + yc * NUM_BINS_PER_BLOCK_X);
vstore4(val3, 0, ((__global float *)dst.ptr) + xc + 12 + yc * NUM_BINS_PER_BLOCK_X);
}
// Compute left over
for(; xc < NUM_BINS_PER_BLOCK_X; ++xc)
{
const float val = hist_ptr[xc];
#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
sum += val * val;
#else /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
sum += fabs(val);
#endif /* (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM) */
((__global float *)dst.ptr)[xc + 0 + yc * NUM_BINS_PER_BLOCK_X] = val;
}
}
sum += dot(sum_f32, (float4)1.0f);
float scale = 1.0f / (sqrt(sum) + NUM_BINS_PER_BLOCK * 0.1f);
#if(HOG_NORM_TYPE == L2HYS_NORM)
// Reset sum
sum_f32 = (float4)0.0f;
sum = 0.0f;
int k = 0;
for(; k <= NUM_BINS_PER_BLOCK - 16; k += 16)
{
float4 val0 = vload4(0, ((__global float *)dst.ptr) + k + 0);
float4 val1 = vload4(0, ((__global float *)dst.ptr) + k + 4);
float4 val2 = vload4(0, ((__global float *)dst.ptr) + k + 8);
float4 val3 = vload4(0, ((__global float *)dst.ptr) + k + 12);
// Scale val
val0 = val0 * (float4)scale;
val1 = val1 * (float4)scale;
val2 = val2 * (float4)scale;
val3 = val3 * (float4)scale;
// Clip val if over _threshold_l2hys
val0 = fmin(val0, (float4)L2_HYST_THRESHOLD);
val1 = fmin(val1, (float4)L2_HYST_THRESHOLD);
val2 = fmin(val2, (float4)L2_HYST_THRESHOLD);
val3 = fmin(val3, (float4)L2_HYST_THRESHOLD);
// Compute val^2
sum_f32 += val0 * val0;
sum_f32 += val1 * val1;
sum_f32 += val2 * val2;
sum_f32 += val3 * val3;
vstore4(val0, 0, ((__global float *)dst.ptr) + k + 0);
vstore4(val1, 0, ((__global float *)dst.ptr) + k + 4);
vstore4(val2, 0, ((__global float *)dst.ptr) + k + 8);
vstore4(val3, 0, ((__global float *)dst.ptr) + k + 12);
}
// Compute left over
for(; k < NUM_BINS_PER_BLOCK; ++k)
{
float val = ((__global float *)dst.ptr)[k] * scale;
// Clip scaled input_value if over L2_HYST_THRESHOLD
val = fmin(val, (float)L2_HYST_THRESHOLD);
sum += val * val;
((__global float *)dst.ptr)[k] = val;
}
sum += dot(sum_f32, (float4)1.0f);
// We use the same constants of OpenCV
scale = 1.0f / (sqrt(sum) + 1e-3f);
#endif /* (HOG_NORM_TYPE == L2HYS_NORM) */
int i = 0;
for(; i <= (NUM_BINS_PER_BLOCK - 16); i += 16)
{
float4 val0 = vload4(0, ((__global float *)dst.ptr) + i + 0);
float4 val1 = vload4(0, ((__global float *)dst.ptr) + i + 4);
float4 val2 = vload4(0, ((__global float *)dst.ptr) + i + 8);
float4 val3 = vload4(0, ((__global float *)dst.ptr) + i + 12);
// Multiply val by the normalization scale factor
val0 = val0 * (float4)scale;
val1 = val1 * (float4)scale;
val2 = val2 * (float4)scale;
val3 = val3 * (float4)scale;
vstore4(val0, 0, ((__global float *)dst.ptr) + i + 0);
vstore4(val1, 0, ((__global float *)dst.ptr) + i + 4);
vstore4(val2, 0, ((__global float *)dst.ptr) + i + 8);
vstore4(val3, 0, ((__global float *)dst.ptr) + i + 12);
}
for(; i < NUM_BINS_PER_BLOCK; ++i)
{
((__global float *)dst.ptr)[i] *= scale;
}
}
#endif /* NUM_CELLS_PER_BLOCK_HEIGHT and NUM_BINS_PER_BLOCK_X and NUM_BINS_PER_BLOCK and HOG_NORM_TYPE and L2_HYST_THRESHOLD */
#if defined(NUM_BLOCKS_PER_DESCRIPTOR_Y) && defined(NUM_BINS_PER_DESCRIPTOR_X) && defined(THRESHOLD) && defined(MAX_NUM_DETECTION_WINDOWS) && defined(IDX_CLASS) && defined(DETECTION_WINDOW_STRIDE_WIDTH) && defined(DETECTION_WINDOW_STRIDE_HEIGHT) && defined(DETECTION_WINDOW_WIDTH) && defined(DETECTION_WINDOW_HEIGHT)
/** This OpenCL kernel computes the HOG detector using linear SVM
*
* @attention The following variables must be passed at compile time:
*
* -# -DNUM_BLOCKS_PER_DESCRIPTOR_Y = Number of blocks per descriptor along the Y direction
* -# -DNUM_BINS_PER_DESCRIPTOR_X = Number of bins per descriptor along the X direction
* -# -DTHRESHOLD = Threshold for the distance between features and SVM classifying plane
* -# -DMAX_NUM_DETECTION_WINDOWS = Maximum number of possible detection windows. It is equal to the size of the DetectioWindow array
* -# -DIDX_CLASS = Index of the class to detect
* -# -DDETECTION_WINDOW_STRIDE_WIDTH = Detection window stride for the X direction
* -# -DDETECTION_WINDOW_STRIDE_HEIGHT = Detection window stride for the Y direction
* -# -DDETECTION_WINDOW_WIDTH = Width of the detection window
* -# -DDETECTION_WINDOW_HEIGHT = Height of the detection window
*
* @note Each work-item computes a single detection window
*
* @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] hog_descriptor Pointer to HOG descriptor. Supported data types: F32
* @param[out] dst Pointer to DetectionWindow array
* @param[out] num_detection_windows Number of objects detected
*/
__kernel void hog_detector(IMAGE_DECLARATION(src),
__global float *hog_descriptor,
__global DetectionWindow *dst,
__global uint *num_detection_windows)
{
// Check if the DetectionWindow array is full
if(*num_detection_windows >= MAX_NUM_DETECTION_WINDOWS)
{
return;
}
Image src = CONVERT_TO_IMAGE_STRUCT(src);
const int src_step_y_f32 = src_stride_y / sizeof(float);
// Init score_f32 with 0
float4 score_f32 = (float4)0.0f;
// Init score with 0
float score = 0.0f;
__global float *src_row_ptr = (__global float *)src.ptr;
// Compute Linear SVM
for(int yb = 0; yb < NUM_BLOCKS_PER_DESCRIPTOR_Y; ++yb, src_row_ptr += src_step_y_f32)
{
int xb = 0;
const int offset_y = yb * NUM_BINS_PER_DESCRIPTOR_X;
for(; xb < (int)NUM_BINS_PER_DESCRIPTOR_X - 8; xb += 8)
{
// Load descriptor values
float4 a0_f32 = vload4(0, src_row_ptr + xb + 0);
float4 a1_f32 = vload4(0, src_row_ptr + xb + 4);
float4 b0_f32 = vload4(0, hog_descriptor + xb + 0 + offset_y);
float4 b1_f32 = vload4(0, hog_descriptor + xb + 4 + offset_y);
// Multiply accumulate
score_f32 += a0_f32 * b0_f32;
score_f32 += a1_f32 * b1_f32;
}
for(; xb < NUM_BINS_PER_DESCRIPTOR_X; ++xb)
{
const float a = src_row_ptr[xb];
const float b = hog_descriptor[xb + offset_y];
score += a * b;
}
}
score += dot(score_f32, (float4)1.0f);
// Add the bias. The bias is located at the position (descriptor_size() - 1)
// (descriptor_size - 1) = NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y
score += hog_descriptor[NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y];
if(score > (float)THRESHOLD)
{
int id = atomic_inc(num_detection_windows);
if(id < MAX_NUM_DETECTION_WINDOWS)
{
dst[id].x = get_global_id(0) * DETECTION_WINDOW_STRIDE_WIDTH;
dst[id].y = get_global_id(1) * DETECTION_WINDOW_STRIDE_HEIGHT;
dst[id].width = DETECTION_WINDOW_WIDTH;
dst[id].height = DETECTION_WINDOW_HEIGHT;
dst[id].idx_class = IDX_CLASS;
dst[id].score = score;
}
}
}
#endif /* NUM_BLOCKS_PER_DESCRIPTOR_Y && NUM_BINS_PER_DESCRIPTOR_X && THRESHOLD && MAX_NUM_DETECTION_WINDOWS && IDX_CLASS &&
* DETECTION_WINDOW_STRIDE_WIDTH && DETECTION_WINDOW_STRIDE_HEIGHT && DETECTION_WINDOW_WIDTH && DETECTION_WINDOW_HEIGHT */
)"