blob: 023e3ba7182f8221a24f82b1f580502a14b0daa1 [file] [log] [blame]
R"(
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Copyright (c) 2016-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPER_H
#define ARM_COMPUTE_HELPER_H
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_accumulate_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#if defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#pragma OPENCL EXTENSION cl_arm_printf : enable
#endif // defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#define GPU_ARCH_MIDGARD 0x100
#define GPU_ARCH_BIFROST 0x200
/** Concatenate two inputs.
*
* @param[in] a The first input to be concatenated
* @param[in] b The second input to be concatenated
*
* @return The concatenated output
*/
#define CONCAT(a, b) a##b
/** Expand the given vector
*
* @param[in] x The vector to be expanded
*
* @return The expanded output
*/
#define EXPAND(x) x
/** Clamp the given value between an upper and lower bound.
*
* @param[in] x The value to be clamped
* @param[in] min_val The lower bound
* @param[in] max_val The upper bound
*
* @return The clamped value.
*/
#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
/** REVn reverses the given vector whose size is n.
* @name REVn
*
* @param[in] x The vector to be reversed
*
* @return The reversed vector
* @{
*/
#define REV1(x) ((x))
#define REV2(x) ((x).s10)
#define REV3(x) ((x).s210)
#define REV4(x) ((x).s3210)
#define REV8(x) ((x).s76543210)
#define REV16(x) ((x).sFEDCBA9876543210)
/** @} */ // end of group REVn
/** Reverse the given vector.
* @name REVERSE
*
* @param[in] x The vector to be reversed
* @param[in] s The size of the vector
*
* @return The reversed vector
* @{
*/
#define REVERSE_STR(x, s) REV##s((x))
#define REVERSE(x, s) REVERSE_STR(x, s)
/** @} */ // end of group REVERSE
/** Circular-right-shift (rotate-right) the vector of size s by the amount of n.
* @name ROTs_n
*
* @param[in] x The vector to be shifted
*
* @return The shifted vector
* @{
*/
#define ROT1_0(x) ((x))
#define ROT2_0(x) ((x))
#define ROT2_1(x) ((x).s10)
#define ROT3_0(x) ((x))
#define ROT3_1(x) ((x).s201)
#define ROT3_2(x) ((x).s120)
#define ROT4_0(x) ((x))
#define ROT4_1(x) ((x).s3012)
#define ROT4_2(x) ((x).s2301)
#define ROT4_3(x) ((x).s1230)
#define ROT8_0(x) ((x))
#define ROT8_1(x) ((x).s70123456)
#define ROT8_2(x) ((x).s67012345)
#define ROT8_3(x) ((x).s56701234)
#define ROT8_4(x) ((x).s45670123)
#define ROT8_5(x) ((x).s34567012)
#define ROT8_6(x) ((x).s23456701)
#define ROT8_7(x) ((x).s12345670)
#define ROT16_0(x) ((x))
#define ROT16_1(x) ((x).sF0123456789ABCDE)
#define ROT16_2(x) ((x).sEF0123456789ABCD)
#define ROT16_3(x) ((x).sDEF0123456789ABC)
#define ROT16_4(x) ((x).sCDEF0123456789AB)
#define ROT16_5(x) ((x).sBCDEF0123456789A)
#define ROT16_6(x) ((x).sABCDEF0123456789)
#define ROT16_7(x) ((x).s9ABCDEF012345678)
#define ROT16_8(x) ((x).s89ABCDEF01234567)
#define ROT16_9(x) ((x).s789ABCDEF0123456)
#define ROT16_10(x) ((x).s6789ABCDEF012345)
#define ROT16_11(x) ((x).s56789ABCDEF01234)
#define ROT16_12(x) ((x).s456789ABCDEF0123)
#define ROT16_13(x) ((x).s3456789ABCDEF012)
#define ROT16_14(x) ((x).s23456789ABCDEF01)
#define ROT16_15(x) ((x).s123456789ABCDEF0)
/** @} */ // end of group ROTs_n
/** Circular-right-shift (rotate-right) the given vector by the given amount.
* @name ROTATE
*
* @param[in] x The vector to be shifted
* @param[in] s The size of the vector
* @param[in] n The amount to be shifted
*
* @return The shifted vector
* @{
*/
#define ROTATE_STR(x, s, n) ROT##s##_##n(x)
#define ROTATE(x, s, n) ROTATE_STR(x, s, n)
/** @} */ // end of group ROTATE
/** Creates a vector of size n filled with offset values corresponding to the location of each element.
* @name V_OFFSn
*
* @param[in] dt The data type of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define V_OFFS1(dt) (dt)(0)
#define V_OFFS2(dt) (dt)(0, 1)
#define V_OFFS3(dt) (dt)(0, 1, 3)
#define V_OFFS4(dt) (dt)(0, 1, 2, 3)
#define V_OFFS8(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7)
#define V_OFFS16(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
/** @} */ // end of group V_OFFSn
/** Create a vector filled with offset values corresponding to the location of each element.
* @name VEC_OFFS
*
* @param[in] dt The data type of the output vector
* @param[in] s The size of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define VEC_OFFS_STR(dt, s) V_OFFS##s(dt)
#define VEC_OFFS(dt, s) VEC_OFFS_STR(dt, s)
/** @} */ // end of group VEC_OFFS
#define VLOAD_STR(size) vload##size
#define VLOAD(size) VLOAD_STR(size)
#define VSTORE_STR(size) vstore##size
#define VSTORE(size) VSTORE_STR(size)
#define float1 float
#define half1 half
#define char1 char
#define uchar1 uchar
#define short1 short
#define ushort1 ushort
#define int1 int
#define uint1 uint
#define long1 long
#define ulong1 ulong
#define double1 double
#define vload1(OFFSET, PTR) *(OFFSET + PTR)
#define vstore1(DATA, OFFSET, PTR) *(OFFSET + PTR) = DATA
// Convert built-in functions with _sat modifier are not supported in floating point so we create defines
// without _sat to overcome this issue
#define convert_float_sat convert_float
#define convert_float1_sat convert_float
#define convert_float2_sat convert_float2
#define convert_float3_sat convert_float3
#define convert_float4_sat convert_float4
#define convert_float8_sat convert_float8
#define convert_float16_sat convert_float16
#define convert_half_sat convert_float
#define convert_half1_sat convert_half
#define convert_half2_sat convert_half2
#define convert_half3_sat convert_half3
#define convert_half4_sat convert_half4
#define convert_half8_sat convert_half8
#define convert_half16_sat convert_half16
#define convert_float1 convert_float
#define convert_half1 convert_half
#define convert_char1 convert_char
#define convert_uchar1 convert_uchar
#define convert_short1 convert_short
#define convert_ushort1 convert_ushort
#define convert_int1 convert_int
#define convert_uint1 convert_uint
#define convert_long1 convert_long
#define convert_ulong1 convert_ulong
#define convert_double1 convert_double
#define convert_char1_sat convert_char_sat
#define convert_uchar1_sat convert_uchar_sat
#define convert_short1_sat convert_short_sat
#define convert_ushort1_sat convert_ushort_sat
#define convert_int1_sat convert_int_sat
#define convert_uint1_sat convert_uint_sat
#define convert_long1_sat convert_long_sat
#define convert_ulong1_sat convert_ulong_sat
#define convert_double1_sat convert_double_sat
#define VEC_DATA_TYPE_STR(type, size) type##size
#define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)
#define CL_VEC_DATA_TYPE_STR(type, size) type##size
#define CL_VEC_DATA_TYPE(type, size) CL_VEC_DATA_TYPE_STR(type, size)
#define CONVERT_STR(x, type) (convert_##type((x)))
#define CONVERT(x, type) CONVERT_STR(x, type)
#define CONVERT_SAT_STR(x, type) (convert_##type##_sat((x)))
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
#define CONVERT_SAT_ROUND_STR(x, type, round) (convert_##type##_sat_##round((x)))
#define CONVERT_SAT_ROUND(x, type, round) CONVERT_SAT_ROUND_STR(x, type, round)
#define VECTOR_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_offset_first_element_in_bytes
#define IMAGE_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_offset_first_element_in_bytes
#define TENSOR3D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_offset_first_element_in_bytes
#define TENSOR4D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_stride_w, \
uint name##_step_w, \
uint name##_offset_first_element_in_bytes
#define CONVERT_TO_VECTOR_STRUCT(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x)
#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0)
#define CONVERT_TO_IMAGE_STRUCT(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y)
#define CONVERT_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0)
#define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z, name##_stride_w, name##_step_w, mod_size)
#define CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0, name##_stride_w, 0, mod_size)
/** Structure to hold Vector information */
typedef struct Vector
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
} Vector;
/** Structure to hold Image information */
typedef struct Image
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
} Image;
/** Structure to hold 3D tensor information */
typedef struct Tensor3D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
} Tensor3D;
/** Structure to hold 4D tensor information */
typedef struct Tensor4D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
int stride_w; /**< Stride of the image in W dimension (in bytes) */
} Tensor4D;
/** Wrap vector information into an Vector structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source vector
* @param[in] stride_x Stride of the vector in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
*
* @return An image object
*/
inline Vector update_vector_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x)
{
Vector vector =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
};
vector.ptr += vector.offset_first_element_in_bytes + get_global_id(0) * step_x;
return vector;
}
/** Wrap image information into an Image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
*
* @return An image object
*/
inline Image update_image_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y;
return img;
}
/** Wrap 3D tensor information into an image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Image update_image_from_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return img;
}
/** Wrap 3D tensor information into an tensor structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Tensor3D update_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return tensor;
}
inline Tensor4D update_tensor4D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z, uint stride_w,
uint step_w,
uint mod_size)
{
Tensor4D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z,
.stride_w = stride_w
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + (get_global_id(2) % mod_size) * step_z + (get_global_id(2) / mod_size) * step_w;
return tensor;
}
/** Get the pointer position of a Vector
*
* @param[in] vec Pointer to the starting position of the buffer
* @param[in] x Relative X position
*/
inline __global const uchar *vector_offset(const Vector *vec, int x)
{
return vec->ptr + x * vec->stride_x;
}
/** Get the pointer position of a Image
*
* @param[in] img Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
*/
inline __global uchar *offset(const Image *img, int x, int y)
{
return img->ptr + x * img->stride_x + y * img->stride_y;
}
/** Get the pointer position of a Tensor3D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
*/
inline __global const uchar *tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z;
}
/** Get the pointer position of a Tensor4D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
* @param[in] w Relative W position
*/
inline __global const uchar *tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + w * tensor->stride_w;
}
#endif // _HELPER_H
#undef CONVERT_SAT
#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)
#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))
#define CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \
DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE); \
acc += src0 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s345, src0.s67, src1.s012) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s4567, src1.s0123) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s567, src1.s0123, src1.s4) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s67, src1.s012, src1.s345) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s7, src1.s0123, src1.s456) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7; \
acc += src1 * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1; \
})
#define CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 16) \
src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))( \
PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
src1 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 17 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 18 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 19 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 20 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 21 * src_stride_y, DATA_TYPE), \
PTR_TO_VALUE(row_ptr + 22 * src_stride_y, DATA_TYPE), PTR_TO_VALUE(row_ptr + 23 * src_stride_y, DATA_TYPE)); \
VEC_DATA_TYPE(DATA_TYPE, 8) \
weights_values0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \
PTR_TO_VALUE(weights_ptr + 0 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 1 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 2 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 3 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 4 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 5 * weights_stride_y, DATA_TYPE), \
PTR_TO_VALUE(weights_ptr + 6 * weights_stride_y, DATA_TYPE), PTR_TO_VALUE(weights_ptr + 7 * weights_stride_y, DATA_TYPE)); \
DATA_TYPE weights_value1 = PTR_TO_VALUE(weights_ptr + 8 * weights_stride_y, DATA_TYPE); \
acc += src0.s02468ACE * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1.s0) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s3579, src0.sBDF, src1.s1) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s3; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s468A, src0.sCE, src1.s02) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s4; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s579, src0.sBDF, src1.s13) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s5; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s68A, src0.sCE, src1.s024) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s6; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s79B, src0.sDF, src1.s135) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s7; \
acc += (VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s8AC, src0.sE, src1.s0246) * (VEC_DATA_TYPE(DATA_TYPE, 8))weights_value1; \
})
#if defined(VEC_SIZE)
#define VFMA(acc, w, src0, src1, src2, src3, src4, src5, src6, src7) \
({ \
acc##0 = fma(src0, w, acc##0); \
acc##1 = fma(src1, w, acc##1); \
acc##2 = fma(src2, w, acc##2); \
acc##3 = fma(src3, w, acc##3); \
acc##4 = fma(src4, w, acc##4); \
acc##5 = fma(src5, w, acc##5); \
acc##6 = fma(src6, w, acc##6); \
acc##7 = fma(src7, w, acc##7); \
})
#define CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr) \
({ \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)row_ptr); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 2 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 3 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 4 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 5 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 6 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 7 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 8 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src9 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 9 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src10 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 10 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src11 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 11 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src12 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 12 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src13 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 13 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src14 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 14 * src_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
src15 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(row_ptr + 15 * src_stride_y)); \
\
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w0 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 0 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w1 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 1 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w2 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 2 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w3 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 3 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w4 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 4 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w5 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 5 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w6 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 6 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w7 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 7 * weights_stride_y)); \
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) \
w8 = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(weights_ptr + 8 * weights_stride_y)); \
\
VFMA(acc, w0, src0, src1, src2, src3, src4, src5, src6, src7); \
VFMA(acc, w1, src1, src2, src3, src4, src5, src6, src7, src8); \
VFMA(acc, w2, src2, src3, src4, src5, src6, src7, src8, src9); \
VFMA(acc, w3, src3, src4, src5, src6, src7, src8, src9, src10); \
VFMA(acc, w4, src4, src5, src6, src7, src8, src9, src10, src11); \
VFMA(acc, w5, src5, src6, src7, src8, src9, src10, src11, src12); \
VFMA(acc, w6, src6, src7, src8, src9, src10, src11, src12, src13); \
VFMA(acc, w7, src7, src8, src9, src10, src11, src12, src13, src14); \
VFMA(acc, w8, src8, src9, src10, src11, src12, src13, src14, src15); \
})
#if VEC_SIZE == 4
#define REDUCE(out, vec) \
({ \
VEC_DATA_TYPE(DATA_TYPE, 2) \
tmp1 = vec.s01 + vec.s23; \
out = tmp1.s0 + tmp1.s1; \
})
#else // VEC_SIZE == 4
#error("Not supported")
#endif // VEC_SIZE == 4
#if STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC_BIFROST(acc, row_ptr, weights_ptr)
#else // STRIDE_X == 1
#error "Not supported"
#endif // STRIDE_X == 1
#else // defined(VEC_SIZE)
#if STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE1_NHWC(acc, row_ptr, weights_ptr)
#elif STRIDE_X == 2 // STRIDE_X == 1
#define CONVOLUTION1x9_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x9_STRIDE2_NHWC(acc, row_ptr, weights_ptr)
#else // STRIDE_X == 1
#error "STRIDE_X larger than 2 is not supported"
#endif // STRIDE_X == 1
#endif // defined(VEC_SIZE)
//#if defined(VEC_SIZE)
/** This kernel performs a direct convolution to convolve the low three dimensions in a tensor with the NHWC data layout
*
* @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
* @note The third dimensions of the weights tensors must be passed at compile time using -DWEIGHTS_DEPTH
* @note If biases are used then -DHAS_BIAS has to be passed at compile time
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] weights_ptr Pointer to the weights tensor. Supported data types: same as @p src_ptr
* @param[in] weights_stride_x Stride of the weights tensor in X dimension (in bytes)
* @param[in] weights_step_x weights_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] weights_stride_y Stride of the weights tensor in Y dimension (in bytes)
* @param[in] weights_step_y weights_stride_y * number of elements along y processed per workitem(in bytes)
* @param[in] weights_stride_z Stride of the weights tensor in Z dimension (in bytes)
* @param[in] weights_step_z weights_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] weights_offset_first_element_in_bytes The offset of the first element in the weights tensor
* @param[in] biases_ptr (Optional) Pointer to the biases tensor. Same as @p src_ptr
* @param[in] biases_stride_x (Optional) Stride of the biases tensor in X dimension (in bytes)
* @param[in] biases_step_x (Optional) biases_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] biases_offset_first_element_in_bytes (Optional) The offset of the first element in the biases tensor
* @param[in] weights_stride_w (Optional) Stride of the weights tensor in the 4th dimension
*/
__kernel void direct_convolution9x9_nhwc(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
TENSOR3D_DECLARATION(weights),
#ifdef HAS_BIAS
VECTOR_DECLARATION(biases),
#endif /* defined(HAS_BIAS) */
unsigned int weights_stride_w)
{
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Tensor3D weights = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(weights);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
VEC_DATA_TYPE(DATA_TYPE, 8)
values = 0;
#if defined(VEC_SIZE)
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values0 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values1 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values2 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values3 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values4 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values5 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values6 = 0;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values7 = 0;
#define STEP_X (VEC_SIZE)
#else // defined(VEC_SIZE)
#define STEP_X (1)
#endif // defined(VEC_SIZE)
const int id0 = get_global_id(0);
const int id1 = get_global_id(1);
const int id2 = get_global_id(2);
__global uchar *weights_addr = (__global uchar *)tensor3D_offset(&weights, 0, 0, 0);
__global uchar *src_addr = (__global uchar *)offset(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z;
weights_addr += id0 * weights_stride_w;
#if(PAD_TOP == 1)
const int coordy = id2 - PAD_TOP;
for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
{
if(coordy < 0) // special case Z = -1 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
else if(coordy == (DST_HEIGHT - PAD_TOP - 1))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
}
else
{
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
src_addr += STEP_X * sizeof(DATA_TYPE);
weights_addr += STEP_X * sizeof(DATA_TYPE);
}
#elif(PAD_TOP == 2) // PAD_TOP == 1
const int coordy = id2 * STRIDE_Y;
for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
{
if(coordy == 0) // special case Z = -2 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
else if(coordy == 1) // special case Z = -1 doesn't exists
{
//skip first row and load the two next ones
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
else if(coordy == (SRC_HEIGHT - 5))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
}
else if(coordy == (SRC_HEIGHT - 6))
{
// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the
// Z axis has no padding at all.
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
}
else
{
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
}
src_addr += STEP_X * sizeof(DATA_TYPE);
weights_addr += STEP_X * sizeof(DATA_TYPE);
}
#else // PAD_TOP == 1
for(volatile int d = 0; d < WEIGHTS_DEPTH; d += STEP_X)
{
CONVOLUTION1x9_NHWC(values, src_addr, weights_addr);
CONVOLUTION1x9_NHWC(values, (src_addr + 1 * (int)src_stride_z), (weights_addr + 1 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 2 * (int)src_stride_z), (weights_addr + 2 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 3 * (int)src_stride_z), (weights_addr + 3 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 4 * (int)src_stride_z), (weights_addr + 4 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 5 * (int)src_stride_z), (weights_addr + 5 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 6 * (int)src_stride_z), (weights_addr + 6 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 7 * (int)src_stride_z), (weights_addr + 7 * (int)weights_stride_z));
CONVOLUTION1x9_NHWC(values, (src_addr + 8 * (int)src_stride_z), (weights_addr + 8 * (int)weights_stride_z));
src_addr += STEP_X * sizeof(DATA_TYPE);
weights_addr += STEP_X * sizeof(DATA_TYPE);
}
#endif // PAD_TOP == 1
#if defined(VEC_SIZE)
REDUCE(values.s0, values0);
REDUCE(values.s1, values1);
REDUCE(values.s2, values2);
REDUCE(values.s3, values3);
REDUCE(values.s4, values4);
REDUCE(values.s5, values5);
REDUCE(values.s6, values6);
REDUCE(values.s7, values7);
#endif // defined(VEC_SIZE)
#if defined(HAS_BIAS)
Vector biases = CONVERT_TO_VECTOR_STRUCT_NO_STEP(biases);
values += (VEC_DATA_TYPE(DATA_TYPE, 8)) * ((__global DATA_TYPE *)(vector_offset(&biases, id0)));
#endif // defined(HAS_BIAS)
*((__global DATA_TYPE *)(dst.ptr + 0 * dst_stride_y)) = values.s0;
*((__global DATA_TYPE *)(dst.ptr + 1 * dst_stride_y)) = values.s1;
*((__global DATA_TYPE *)(dst.ptr + 2 * dst_stride_y)) = values.s2;
*((__global DATA_TYPE *)(dst.ptr + 3 * dst_stride_y)) = values.s3;
*((__global DATA_TYPE *)(dst.ptr + 4 * dst_stride_y)) = values.s4;
*((__global DATA_TYPE *)(dst.ptr + 5 * dst_stride_y)) = values.s5;
*((__global DATA_TYPE *)(dst.ptr + 6 * dst_stride_y)) = values.s6;
*((__global DATA_TYPE *)(dst.ptr + 7 * dst_stride_y)) = values.s7;
#undef STEP_X
}
#endif // defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH) && defined(DATA_LAYOUT_NHWC)
)"