blob: b969df35e3710e7c3285541dcb08341afffe0940 [file] [log] [blame]
R"(
/*
* Copyright (c) 2017-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
/*
* Copyright (c) 2016-2020 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef ARM_COMPUTE_HELPER_H
#define ARM_COMPUTE_HELPER_H
#if defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#endif // defined(ARM_COMPUTE_OPENCL_FP16_ENABLED) && defined(cl_khr_fp16)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ENABLED) && defined(cl_arm_integer_dot_product_int8)
#if defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#pragma OPENCL EXTENSION cl_arm_integer_dot_product_accumulate_int8 : enable
#endif // defined(ARM_COMPUTE_OPENCL_DOT8_ACC_ENABLED) && defined(cl_arm_integer_dot_product_accumulate_int8)
#if defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#pragma OPENCL EXTENSION cl_arm_printf : enable
#endif // defined(ARM_COMPUTE_DEBUG_ENABLED) && defined(cl_arm_printf)
#define GPU_ARCH_MIDGARD 0x100
#define GPU_ARCH_BIFROST 0x200
/** Concatenate two inputs.
*
* @param[in] a The first input to be concatenated
* @param[in] b The second input to be concatenated
*
* @return The concatenated output
*/
#define CONCAT(a, b) a##b
/** Expand the given vector
*
* @param[in] x The vector to be expanded
*
* @return The expanded output
*/
#define EXPAND(x) x
/** Clamp the given value between an upper and lower bound.
*
* @param[in] x The value to be clamped
* @param[in] min_val The lower bound
* @param[in] max_val The upper bound
*
* @return The clamped value.
*/
#define CLAMP(x, min_val, max_val) min(max(x, min_val), max_val)
/** REVn reverses the given vector whose size is n.
* @name REVn
*
* @param[in] x The vector to be reversed
*
* @return The reversed vector
* @{
*/
#define REV1(x) ((x))
#define REV2(x) ((x).s10)
#define REV3(x) ((x).s210)
#define REV4(x) ((x).s3210)
#define REV8(x) ((x).s76543210)
#define REV16(x) ((x).sFEDCBA9876543210)
/** @} */ // end of group REVn
/** Reverse the given vector.
* @name REVERSE
*
* @param[in] x The vector to be reversed
* @param[in] s The size of the vector
*
* @return The reversed vector
* @{
*/
#define REVERSE_STR(x, s) REV##s((x))
#define REVERSE(x, s) REVERSE_STR(x, s)
/** @} */ // end of group REVERSE
/** Circular-right-shift (rotate-right) the vector of size s by the amount of n.
* @name ROTs_n
*
* @param[in] x The vector to be shifted
*
* @return The shifted vector
* @{
*/
#define ROT1_0(x) ((x))
#define ROT2_0(x) ((x))
#define ROT2_1(x) ((x).s10)
#define ROT3_0(x) ((x))
#define ROT3_1(x) ((x).s201)
#define ROT3_2(x) ((x).s120)
#define ROT4_0(x) ((x))
#define ROT4_1(x) ((x).s3012)
#define ROT4_2(x) ((x).s2301)
#define ROT4_3(x) ((x).s1230)
#define ROT8_0(x) ((x))
#define ROT8_1(x) ((x).s70123456)
#define ROT8_2(x) ((x).s67012345)
#define ROT8_3(x) ((x).s56701234)
#define ROT8_4(x) ((x).s45670123)
#define ROT8_5(x) ((x).s34567012)
#define ROT8_6(x) ((x).s23456701)
#define ROT8_7(x) ((x).s12345670)
#define ROT16_0(x) ((x))
#define ROT16_1(x) ((x).sF0123456789ABCDE)
#define ROT16_2(x) ((x).sEF0123456789ABCD)
#define ROT16_3(x) ((x).sDEF0123456789ABC)
#define ROT16_4(x) ((x).sCDEF0123456789AB)
#define ROT16_5(x) ((x).sBCDEF0123456789A)
#define ROT16_6(x) ((x).sABCDEF0123456789)
#define ROT16_7(x) ((x).s9ABCDEF012345678)
#define ROT16_8(x) ((x).s89ABCDEF01234567)
#define ROT16_9(x) ((x).s789ABCDEF0123456)
#define ROT16_10(x) ((x).s6789ABCDEF012345)
#define ROT16_11(x) ((x).s56789ABCDEF01234)
#define ROT16_12(x) ((x).s456789ABCDEF0123)
#define ROT16_13(x) ((x).s3456789ABCDEF012)
#define ROT16_14(x) ((x).s23456789ABCDEF01)
#define ROT16_15(x) ((x).s123456789ABCDEF0)
/** @} */ // end of group ROTs_n
/** Circular-right-shift (rotate-right) the given vector by the given amount.
* @name ROTATE
*
* @param[in] x The vector to be shifted
* @param[in] s The size of the vector
* @param[in] n The amount to be shifted
*
* @return The shifted vector
* @{
*/
#define ROTATE_STR(x, s, n) ROT##s##_##n(x)
#define ROTATE(x, s, n) ROTATE_STR(x, s, n)
/** @} */ // end of group ROTATE
/** Creates a vector of size n filled with offset values corresponding to the location of each element.
* @name V_OFFSn
*
* @param[in] dt The data type of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define V_OFFS1(dt) (dt)(0)
#define V_OFFS2(dt) (dt)(0, 1)
#define V_OFFS3(dt) (dt)(0, 1, 3)
#define V_OFFS4(dt) (dt)(0, 1, 2, 3)
#define V_OFFS8(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7)
#define V_OFFS16(dt) (dt)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
/** @} */ // end of group V_OFFSn
/** Create a vector filled with offset values corresponding to the location of each element.
* @name VEC_OFFS
*
* @param[in] dt The data type of the output vector
* @param[in] s The size of the output vector
*
* @return The vector filled with offset values
* @{
*/
#define VEC_OFFS_STR(dt, s) V_OFFS##s(dt)
#define VEC_OFFS(dt, s) VEC_OFFS_STR(dt, s)
/** @} */ // end of group VEC_OFFS
#define VLOAD_STR(size) vload##size
#define VLOAD(size) VLOAD_STR(size)
#define VSTORE_STR(size) vstore##size
#define VSTORE(size) VSTORE_STR(size)
#define float1 float
#define half1 half
#define char1 char
#define uchar1 uchar
#define short1 short
#define ushort1 ushort
#define int1 int
#define uint1 uint
#define long1 long
#define ulong1 ulong
#define double1 double
#define vload1(OFFSET, PTR) *(OFFSET + PTR)
#define vstore1(DATA, OFFSET, PTR) *(OFFSET + PTR) = DATA
// Convert built-in functions with _sat modifier are not supported in floating point so we create defines
// without _sat to overcome this issue
#define convert_float_sat convert_float
#define convert_float1_sat convert_float
#define convert_float2_sat convert_float2
#define convert_float3_sat convert_float3
#define convert_float4_sat convert_float4
#define convert_float8_sat convert_float8
#define convert_float16_sat convert_float16
#define convert_half_sat convert_float
#define convert_half1_sat convert_half
#define convert_half2_sat convert_half2
#define convert_half3_sat convert_half3
#define convert_half4_sat convert_half4
#define convert_half8_sat convert_half8
#define convert_half16_sat convert_half16
#define convert_float1 convert_float
#define convert_half1 convert_half
#define convert_char1 convert_char
#define convert_uchar1 convert_uchar
#define convert_short1 convert_short
#define convert_ushort1 convert_ushort
#define convert_int1 convert_int
#define convert_uint1 convert_uint
#define convert_long1 convert_long
#define convert_ulong1 convert_ulong
#define convert_double1 convert_double
#define convert_char1_sat convert_char_sat
#define convert_uchar1_sat convert_uchar_sat
#define convert_short1_sat convert_short_sat
#define convert_ushort1_sat convert_ushort_sat
#define convert_int1_sat convert_int_sat
#define convert_uint1_sat convert_uint_sat
#define convert_long1_sat convert_long_sat
#define convert_ulong1_sat convert_ulong_sat
#define convert_double1_sat convert_double_sat
#define VEC_DATA_TYPE_STR(type, size) type##size
#define VEC_DATA_TYPE(type, size) VEC_DATA_TYPE_STR(type, size)
#define CL_VEC_DATA_TYPE_STR(type, size) type##size
#define CL_VEC_DATA_TYPE(type, size) CL_VEC_DATA_TYPE_STR(type, size)
#define CONVERT_STR(x, type) (convert_##type((x)))
#define CONVERT(x, type) CONVERT_STR(x, type)
#define CONVERT_SAT_STR(x, type) (convert_##type##_sat((x)))
#define CONVERT_SAT(x, type) CONVERT_SAT_STR(x, type)
#define CONVERT_SAT_ROUND_STR(x, type, round) (convert_##type##_sat_##round((x)))
#define CONVERT_SAT_ROUND(x, type, round) CONVERT_SAT_ROUND_STR(x, type, round)
#define VECTOR_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_offset_first_element_in_bytes
#define IMAGE_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_offset_first_element_in_bytes
#define TENSOR3D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_offset_first_element_in_bytes
#define TENSOR4D_DECLARATION(name) \
__global uchar *name##_ptr, \
uint name##_stride_x, \
uint name##_step_x, \
uint name##_stride_y, \
uint name##_step_y, \
uint name##_stride_z, \
uint name##_step_z, \
uint name##_stride_w, \
uint name##_step_w, \
uint name##_offset_first_element_in_bytes
#define CONVERT_TO_VECTOR_STRUCT(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x)
#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name) \
update_vector_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0)
#define CONVERT_TO_IMAGE_STRUCT(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y)
#define CONVERT_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT_NO_STEP(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, name##_step_z)
#define CONVERT_TENSOR3D_TO_IMAGE_STRUCT(name) \
update_image_from_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z)
#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name) \
update_tensor3D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0)
#define CONVERT_TO_TENSOR4D_STRUCT(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, name##_step_x, name##_stride_y, name##_step_y, \
name##_stride_z, name##_step_z, name##_stride_w, name##_step_w, mod_size)
#define CONVERT_TO_TENSOR4D_STRUCT_NO_STEP(name, mod_size) \
update_tensor4D_workitem_ptr(name##_ptr, name##_offset_first_element_in_bytes, name##_stride_x, 0, name##_stride_y, 0, name##_stride_z, 0, name##_stride_w, 0, mod_size)
/** Structure to hold Vector information */
typedef struct Vector
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
} Vector;
/** Structure to hold Image information */
typedef struct Image
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
} Image;
/** Structure to hold 3D tensor information */
typedef struct Tensor3D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
} Tensor3D;
/** Structure to hold 4D tensor information */
typedef struct Tensor4D
{
__global uchar *ptr; /**< Pointer to the starting postion of the buffer */
int offset_first_element_in_bytes; /**< The offset of the first element in the source image */
int stride_x; /**< Stride of the image in X dimension (in bytes) */
int stride_y; /**< Stride of the image in Y dimension (in bytes) */
int stride_z; /**< Stride of the image in Z dimension (in bytes) */
int stride_w; /**< Stride of the image in W dimension (in bytes) */
} Tensor4D;
/** Wrap vector information into an Vector structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source vector
* @param[in] stride_x Stride of the vector in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
*
* @return An image object
*/
inline Vector update_vector_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x)
{
Vector vector =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
};
vector.ptr += vector.offset_first_element_in_bytes + get_global_id(0) * step_x;
return vector;
}
/** Wrap image information into an Image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
*
* @return An image object
*/
inline Image update_image_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y;
return img;
}
/** Wrap 3D tensor information into an image structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Image update_image_from_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Image img =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y
};
img.ptr += img.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return img;
}
/** Wrap 3D tensor information into an tensor structure, and make the pointer point at this workitem's data.
*
* @param[in] ptr Pointer to the starting postion of the buffer
* @param[in] offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] stride_x Stride of the image in X dimension (in bytes)
* @param[in] step_x stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] stride_y Stride of the image in Y dimension (in bytes)
* @param[in] step_y stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] stride_z Stride of the image in Z dimension (in bytes)
* @param[in] step_z stride_z * number of elements along Z processed per workitem(in bytes)
*
* @return A 3D tensor object
*/
inline Tensor3D update_tensor3D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z)
{
Tensor3D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + get_global_id(2) * step_z;
return tensor;
}
inline Tensor4D update_tensor4D_workitem_ptr(__global uchar *ptr, uint offset_first_element_in_bytes, uint stride_x, uint step_x, uint stride_y, uint step_y, uint stride_z, uint step_z, uint stride_w,
uint step_w,
uint mod_size)
{
Tensor4D tensor =
{
.ptr = ptr,
.offset_first_element_in_bytes = offset_first_element_in_bytes,
.stride_x = stride_x,
.stride_y = stride_y,
.stride_z = stride_z,
.stride_w = stride_w
};
tensor.ptr += tensor.offset_first_element_in_bytes + get_global_id(0) * step_x + get_global_id(1) * step_y + (get_global_id(2) % mod_size) * step_z + (get_global_id(2) / mod_size) * step_w;
return tensor;
}
/** Get the pointer position of a Vector
*
* @param[in] vec Pointer to the starting position of the buffer
* @param[in] x Relative X position
*/
inline __global const uchar *vector_offset(const Vector *vec, int x)
{
return vec->ptr + x * vec->stride_x;
}
/** Get the pointer position of a Image
*
* @param[in] img Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
*/
inline __global uchar *offset(const Image *img, int x, int y)
{
return img->ptr + x * img->stride_x + y * img->stride_y;
}
/** Get the pointer position of a Tensor3D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
*/
inline __global const uchar *tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z;
}
/** Get the pointer position of a Tensor4D
*
* @param[in] tensor Pointer to the starting position of the buffer
* @param[in] x Relative X position
* @param[in] y Relative Y position
* @param[in] z Relative Z position
* @param[in] w Relative W position
*/
inline __global const uchar *tensor4D_offset(const Tensor4D *tensor, int x, int y, int z, int w)
{
return tensor->ptr + x * tensor->stride_x + y * tensor->stride_y + z * tensor->stride_z + w * tensor->stride_w;
}
#endif // _HELPER_H
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
#define VEC_FLOAT VEC_DATA_TYPE(float, VEC_SIZE)
#define VEC_INT VEC_DATA_TYPE(int, VEC_SIZE)
#define VEC_QUANT VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
#define CONVERT_RTE(x, type) (convert_##type##_rte((x)))
#define CONVERT_DOWN(x, type) CONVERT_RTE(x, type)
inline VEC_QUANT requantize(VEC_QUANT input, float in_offset, float out_offset, float in_scale, float out_scale)
{
const VEC_FLOAT in_f32 = (CONVERT(input, VEC_FLOAT) - (VEC_FLOAT)((float)in_offset)) * (VEC_FLOAT)((float)in_scale);
const VEC_FLOAT out_f32 = in_f32 / ((VEC_FLOAT)(float)out_scale) + ((VEC_FLOAT)((float)out_offset));
const VEC_QUANT res_q8 = CONVERT_SAT(CONVERT_DOWN(out_f32, VEC_INT), VEC_QUANT);
return res_q8;
}
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
#if defined(DATA_TYPE) && defined(VEC_SIZE)
#if defined(DEPTH) && defined(ELEMENT_SIZE)
#if defined(INPUT1_WIDTH)
#if ELEMENT_SIZE == 1
#define COND_DATA_TYPE char
#elif ELEMENT_SIZE == 2
#define COND_DATA_TYPE short
#elif ELEMENT_SIZE == 4
#define COND_DATA_TYPE int
#else // ELEMENT_SIZE
#error "Element size not supported"
#endif // ELEMENT_SIZE
#if VEC_SIZE == 2
#define SEQ ((int2)(0, 1))
#elif VEC_SIZE == 4
#define SEQ ((int4)(0, 1, 2, 3))
#elif VEC_SIZE == 8
#define SEQ ((int8)(0, 1, 2, 3, 4, 5, 6, 7))
#elif VEC_SIZE == 16
#define SEQ ((int16)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15))
#else // VEC_SIZE
#error "Vector size not supported"
#endif // VEC_SIZE
/** This kernel concatenates two input tensors into the output tensor along the first dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
* @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8
*
* @param[in] src1_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32
* @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] src1_pad_right Right paddings of the first input tensor in unit of elements
* @param[in] src1_pad_left Left paddings of the second input tensor in unit of elements
*/
__kernel void concatenate_width_x2(
TENSOR4D_DECLARATION(src1),
TENSOR4D_DECLARATION(src2),
TENSOR4D_DECLARATION(dst),
uint src1_pad_right,
uint src2_pad_left)
{
Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH);
// Calculate input indices
const int x = get_global_id(0) * (int)VEC_SIZE;
const int y = get_global_id(1);
const int z = get_global_id(2) % (int)DEPTH;
const int w = get_global_id(2) / (int)DEPTH;
const int x1 = min(x, (int)INPUT1_WIDTH + (int)src1_pad_right - (int)VEC_SIZE);
const int x2 = max(x - (int)INPUT1_WIDTH, -(int)src2_pad_left);
// Calculate inputs and output addresses
const __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (int)src1_stride_x + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w;
const __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (int)src2_stride_x + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in1_ptr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in2_ptr);
#if defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT)
src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_IN2) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_IN2) && defined(SCALE_OUT) */
const VEC_DATA_TYPE(int, VEC_SIZE) x_coords = SEQ + (VEC_DATA_TYPE(int, VEC_SIZE))(x);
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) values = select(src2_values, src1_values, cond);
VSTORE(VEC_SIZE)
(values, 0, (__global DATA_TYPE *)dst.ptr);
}
#if defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH)
/** This kernel concatenates four input tensors into the output tensor along the first dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
* @note First input tensor width should be given as a preprocessor argument using -DINPUT1_WIDTH=width. e.g. -DINPUT1_WIDTH=8
* @note Second input tensor width should be given as a preprocessor argument using -DINPUT2_WIDTH=width. e.g. -DINPUT2_WIDTH=8
* @note Third input tensor width should be given as a preprocessor argument using -DINPUT3_WIDTH=width. e.g. -DINPUT3_WIDTH=8
*
* @param[in] src1_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32
* @param[in] src1_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src1_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src1_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src1_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src1_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src1_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src1_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src1_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src2_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src2_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src2_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src2_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src2_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src2_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src2_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src2_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src2_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src3_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src3_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src3_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src3_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src3_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src3_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src3_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src3_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src3_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src3_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[in] src4_ptr Pointer to the source tensor. Supported data types: same as @p src1_ptr
* @param[in] src4_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src4_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src4_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src4_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src4_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src4_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src4_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src4_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src4_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src1_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] src1_pad_right Right paddings of the first input tensor in unit of elements
* @param[in] src2_pad_left Left paddings of the second input tensor in unit of elements
* @param[in] src2_pad_right Right paddings of the second input tensor in unit of elements
* @param[in] src3_pad_left Left paddings of the third input tensor in unit of elements
* @param[in] src3_pad_right Right paddings of the third input tensor in unit of elements
* @param[in] src4_pad_left Left paddings of the fourth input tensor in unit of elements
*/
__kernel void concatenate_width_x4(
TENSOR4D_DECLARATION(src1),
TENSOR4D_DECLARATION(src2),
TENSOR4D_DECLARATION(src3),
TENSOR4D_DECLARATION(src4),
TENSOR4D_DECLARATION(dst),
uint src1_pad_right,
uint src2_pad_left,
uint src2_pad_right,
uint src3_pad_left,
uint src3_pad_right,
uint src4_pad_left)
{
Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH);
// Calculate input indices
const int x = get_global_id(0) * (int)VEC_SIZE;
const int y = get_global_id(1);
const int z = get_global_id(2) % (int)DEPTH;
const int w = get_global_id(2) / (int)DEPTH;
const int x1 = min(x, (int)INPUT1_WIDTH + (int)src1_pad_right - (int)VEC_SIZE);
const int x2 = min(max(x - (int)INPUT1_WIDTH, -(int)src2_pad_left), (int)INPUT2_WIDTH + (int)src2_pad_right - (int)VEC_SIZE);
const int x3 = min(max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH, -(int)src3_pad_left), (int)INPUT3_WIDTH + (int)src3_pad_right - (int)VEC_SIZE);
const int x4 = max(x - (int)INPUT1_WIDTH - (int)INPUT2_WIDTH - (int)INPUT3_WIDTH, -(int)src4_pad_left);
// Calculate inputs and output addresses
const __global uchar *in1_ptr = src1_ptr + (int)src1_offset_first_element_in_bytes + x1 * (int)src1_stride_x + y * (int)src1_stride_y + z * (int)src1_stride_z + w * (int)src1_stride_w;
const __global uchar *in2_ptr = src2_ptr + (int)src2_offset_first_element_in_bytes + x2 * (int)src2_stride_x + y * (int)src2_stride_y + z * (int)src2_stride_z + w * (int)src2_stride_w;
const __global uchar *in3_ptr = src3_ptr + (int)src3_offset_first_element_in_bytes + x3 * (int)src3_stride_x + y * (int)src3_stride_y + z * (int)src3_stride_z + w * (int)src3_stride_w;
const __global uchar *in4_ptr = src4_ptr + (int)src4_offset_first_element_in_bytes + x4 * (int)src4_stride_x + y * (int)src4_stride_y + z * (int)src4_stride_z + w * (int)src4_stride_w;
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src1_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in1_ptr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src2_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in2_ptr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src3_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in3_ptr);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
src4_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)in4_ptr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4)
src1_values = requantize(src1_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
src2_values = requantize(src2_values, OFFSET_IN2, OFFSET_OUT, SCALE_IN2, SCALE_OUT);
src3_values = requantize(src3_values, OFFSET_IN3, OFFSET_OUT, SCALE_IN3, SCALE_OUT);
src4_values = requantize(src4_values, OFFSET_IN4, OFFSET_OUT, SCALE_IN4, SCALE_OUT);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) && defined(OFFSET_IN2) && defined(SCALE_IN2) && defined(OFFSET_IN3) && defined(SCALE_IN3) && defined(OFFSET_IN4) && defined(SCALE_IN4) */
const VEC_DATA_TYPE(int, VEC_SIZE) x_coords = SEQ + (VEC_DATA_TYPE(int, VEC_SIZE))(x);
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in2 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in3 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH + INPUT2_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
const VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE) cond_in4 = CONVERT(x_coords < (VEC_DATA_TYPE(int, VEC_SIZE))(INPUT1_WIDTH + INPUT2_WIDTH + INPUT3_WIDTH), VEC_DATA_TYPE(COND_DATA_TYPE, VEC_SIZE));
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
values = select(src2_values, src1_values, cond_in2);
values = select(src3_values, values, cond_in3);
values = select(src4_values, values, cond_in4);
VSTORE(VEC_SIZE)
(values, 0, (__global DATA_TYPE *)dst.ptr);
}
#endif /* defined(INPUT2_WIDTH) && defined(INPUT3_WIDTH) */
#endif /* defined(INPUT1_WIDTH) */
#endif /* defined(DEPTH) && defined(ELEMENT_SIZE) */
#if defined(WIDTH_OFFSET) && defined(DEPTH)
/** This kernel concatenates the input tensor into the output tensor along the first dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note The offset for the first spatial dimension has to be passed at compile time using -DWIDTH_OFFSET. i.e. -DWIDTH_OFFSET=128
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void concatenate_width(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst))
{
Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, DEPTH);
Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
source_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src.ptr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
const VEC_QUANT out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
VSTORE(VEC_SIZE)
(out, 0, (__global DATA_TYPE *)(dst.ptr) + WIDTH_OFFSET);
#else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
VSTORE(VEC_SIZE)
(source_values, 0, (__global DATA_TYPE *)(dst.ptr) + WIDTH_OFFSET);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
}
#endif /* defined(WIDTH_OFFSET) && defined(DEPTH) */
#if defined(HEIGHT_OFFSET) && defined(DEPTH) && defined(VEC_SIZE)
/** This kernel concatenates the input tensor into the output tensor along the second dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
* @note Vector sizes supported are 2,4,8 and 16.
* @note The offset for the second spatial dimension has to be passed at compile time using -DHEIGHT_OFFSET. i.e. -DHEIGHT_OFFSET=128
* @note Tensor depth should be given as a preprocessor argument using -DDEPTH=size. e.g. -DDEPTH=16
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: U8/S8/QASYMM8/U16/S16/F16/U32/F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_stride_w Stride of the first source tensor in Z dimension (in bytes)
* @param[in] src_step_w src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_stride_w Stride of the destination tensor in Z dimension (in bytes)
* @param[in] dst_step_w output_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
*/
__kernel void concatenate_height(
TENSOR4D_DECLARATION(src),
TENSOR4D_DECLARATION(dst))
{
Tensor4D src = CONVERT_TO_TENSOR4D_STRUCT(src, DEPTH);
Tensor4D dst = CONVERT_TO_TENSOR4D_STRUCT(dst, DEPTH);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
source_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src.ptr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
const VEC_QUANT out = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
VSTORE(VEC_SIZE)
(out, 0, (__global DATA_TYPE *)(dst.ptr + HEIGHT_OFFSET * dst_stride_y));
#else /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
VSTORE(VEC_SIZE)
(source_values, 0, (__global DATA_TYPE *)(dst.ptr + HEIGHT_OFFSET * dst_stride_y));
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
}
#endif /* defined(HEIGHT_OFFSET) && defined(DEPTH) */
/** This kernel concatenates the input tensor into the output tensor along the third dimension
*
* @note The data type has to be passed at compile time using -DDATA_TYPE. i.e. -DDATA_TYPE=float
* @note Vector size has to be passed at compile time using -DVEC_SIZE. i.e. -DVEC_SIZE=16
*
* @param[in] src_ptr Pointer to the source tensor. Supported data types: F16, F32
* @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] src_step_z src_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor
* @param[out] dst_ptr Pointer to the destination tensor. Supported data types: same as @p src_ptr
* @param[in] dst_stride_x Stride of the destination tensor in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination tensor in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_stride_z Stride of the source tensor in Z dimension (in bytes)
* @param[in] dst_step_z dst_stride_z * number of elements along Z processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination tensor
* @param[in] offsets The offsets to the first valid element of the output tensor in bytes
*/
__kernel void concatenate(
TENSOR3D_DECLARATION(src),
TENSOR3D_DECLARATION(dst),
int offset)
{
Tensor3D src = CONVERT_TO_TENSOR3D_STRUCT(src);
Tensor3D dst = CONVERT_TO_TENSOR3D_STRUCT(dst);
VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE)
source_values = VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)src.ptr);
#if defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT)
source_values = requantize(source_values, OFFSET_IN1, OFFSET_OUT, SCALE_IN1, SCALE_OUT);
#endif /* defined(OFFSET_IN1) && defined(OFFSET_OUT) && defined(SCALE_IN1) && defined(SCALE_OUT) */
VSTORE(VEC_SIZE)
(source_values, 0, (__global DATA_TYPE *)(dst.ptr + offset));
}
#endif /* defined(DATA_TYPE) && defined(VEC_SIZE) */
)"