blob: 556bd2bd41edb3f76083b81d92c192bb6505017a [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef __ARM_COMPUTE_TEST_MODEL_OBJECTS_ALEXNET_H__
#define __ARM_COMPUTE_TEST_MODEL_OBJECTS_ALEXNET_H__
#include "TensorLibrary.h"
#include "Utils.h"
#include <memory>
using namespace arm_compute;
using namespace arm_compute::test;
namespace arm_compute
{
namespace test
{
namespace model_objects
{
/** AlexNet model object */
template <typename ITensorType,
typename TensorType,
typename SubTensorType,
typename Accessor,
typename ActivationLayerFunction,
typename ConvolutionLayerFunction,
typename FullyConnectedLayerFunction,
typename NormalizationLayerFunction,
typename PoolingLayerFunction,
typename SoftmaxLayerFunction,
DataType dt = DataType::F32,
int fixed_point_position = 4>
class AlexNet
{
public:
AlexNet()
: _batches(1), _reshaped_weights(false)
{
}
void init_weights(unsigned int batches, bool reshaped_weights = false)
{
_batches = batches;
_reshaped_weights = reshaped_weights;
// Initialize weights and biases
if(!_reshaped_weights)
{
for(auto &wi : w)
{
wi = std::unique_ptr<TensorType>(new TensorType());
}
for(auto &bi : b)
{
bi = std::unique_ptr<TensorType>(new TensorType());
}
w[0]->allocator()->init(TensorInfo(TensorShape(11U, 11U, 3U, 96U), 1, dt, fixed_point_position));
b[0]->allocator()->init(TensorInfo(TensorShape(96U), 1, dt, fixed_point_position));
w[1]->allocator()->init(TensorInfo(TensorShape(5U, 5U, 48U, 256U), 1, dt, fixed_point_position));
b[1]->allocator()->init(TensorInfo(TensorShape(256U), 1, dt, fixed_point_position));
w[2]->allocator()->init(TensorInfo(TensorShape(3U, 3U, 256U, 384U), 1, dt, fixed_point_position));
b[2]->allocator()->init(TensorInfo(TensorShape(384U), 1, dt, fixed_point_position));
w[3]->allocator()->init(TensorInfo(TensorShape(3U, 3U, 192U, 384U), 1, dt, fixed_point_position));
b[3]->allocator()->init(TensorInfo(TensorShape(384U), 1, dt, fixed_point_position));
w[4]->allocator()->init(TensorInfo(TensorShape(3U, 3U, 192U, 256U), 1, dt, fixed_point_position));
b[4]->allocator()->init(TensorInfo(TensorShape(256U), 1, dt, fixed_point_position));
w[5]->allocator()->init(TensorInfo(TensorShape(9216U, 4096U), 1, dt, fixed_point_position));
b[5]->allocator()->init(TensorInfo(TensorShape(4096U), 1, dt, fixed_point_position));
w[6]->allocator()->init(TensorInfo(TensorShape(4096U, 4096U), 1, dt, fixed_point_position));
b[6]->allocator()->init(TensorInfo(TensorShape(4096U), 1, dt, fixed_point_position));
w[7]->allocator()->init(TensorInfo(TensorShape(4096U, 1000U), 1, dt, fixed_point_position));
b[7]->allocator()->init(TensorInfo(TensorShape(1000U), 1, dt, fixed_point_position));
w21 = std::unique_ptr<SubTensorType>(new SubTensorType(w[1].get(), TensorShape(5U, 5U, 48U, 128U), Coordinates()));
w22 = std::unique_ptr<SubTensorType>(new SubTensorType(w[1].get(), TensorShape(5U, 5U, 48U, 128U), Coordinates(0, 0, 0, 128)));
b21 = std::unique_ptr<SubTensorType>(new SubTensorType(b[1].get(), TensorShape(128U), Coordinates()));
b22 = std::unique_ptr<SubTensorType>(new SubTensorType(b[1].get(), TensorShape(128U), Coordinates(128)));
w41 = std::unique_ptr<SubTensorType>(new SubTensorType(w[3].get(), TensorShape(3U, 3U, 192U, 192U), Coordinates()));
w42 = std::unique_ptr<SubTensorType>(new SubTensorType(w[3].get(), TensorShape(3U, 3U, 192U, 192U), Coordinates(0, 0, 0, 192)));
b41 = std::unique_ptr<SubTensorType>(new SubTensorType(b[3].get(), TensorShape(192U), Coordinates()));
b42 = std::unique_ptr<SubTensorType>(new SubTensorType(b[3].get(), TensorShape(192U), Coordinates(192)));
w51 = std::unique_ptr<SubTensorType>(new SubTensorType(w[4].get(), TensorShape(3U, 3U, 192U, 128U), Coordinates()));
w52 = std::unique_ptr<SubTensorType>(new SubTensorType(w[4].get(), TensorShape(3U, 3U, 192U, 128U), Coordinates(0, 0, 0, 128)));
b51 = std::unique_ptr<SubTensorType>(new SubTensorType(b[4].get(), TensorShape(128U), Coordinates()));
b52 = std::unique_ptr<SubTensorType>(new SubTensorType(b[4].get(), TensorShape(128U), Coordinates(128)));
}
else
{
const unsigned int dt_size = 16 / arm_compute::data_size_from_type(dt);
// Create tensor for the reshaped weights
w[0] = std::unique_ptr<TensorType>(new TensorType());
auto w21_tensor = std::unique_ptr<TensorType>(new TensorType());
auto w22_tensor = std::unique_ptr<TensorType>(new TensorType());
w[2] = std::unique_ptr<TensorType>(new TensorType());
auto w41_tensor = std::unique_ptr<TensorType>(new TensorType());
auto w42_tensor = std::unique_ptr<TensorType>(new TensorType());
auto w51_tensor = std::unique_ptr<TensorType>(new TensorType());
auto w52_tensor = std::unique_ptr<TensorType>(new TensorType());
w[0]->allocator()->init(TensorInfo(TensorShape(366U * dt_size, 96U / dt_size), 1, dt, fixed_point_position));
w21_tensor->allocator()->init(TensorInfo(TensorShape(1248U * dt_size, 128U / dt_size), 1, dt, fixed_point_position));
w22_tensor->allocator()->init(TensorInfo(TensorShape(1248U * dt_size, 128U / dt_size), 1, dt, fixed_point_position));
w[2]->allocator()->init(TensorInfo(TensorShape(2560U * dt_size, 384U / dt_size), 1, dt, fixed_point_position));
w41_tensor->allocator()->init(TensorInfo(TensorShape(1920U * dt_size, 192U / dt_size), 1, dt, fixed_point_position));
w42_tensor->allocator()->init(TensorInfo(TensorShape(1920U * dt_size, 192U / dt_size), 1, dt, fixed_point_position));
w51_tensor->allocator()->init(TensorInfo(TensorShape(1920U * dt_size, 128U / dt_size), 1, dt, fixed_point_position));
w52_tensor->allocator()->init(TensorInfo(TensorShape(1920U * dt_size, 128U / dt_size), 1, dt, fixed_point_position));
w21 = std::move(w21_tensor);
w22 = std::move(w22_tensor);
w41 = std::move(w41_tensor);
w42 = std::move(w42_tensor);
w51 = std::move(w51_tensor);
w52 = std::move(w52_tensor);
w[5] = std::unique_ptr<TensorType>(new TensorType());
w[6] = std::unique_ptr<TensorType>(new TensorType());
w[7] = std::unique_ptr<TensorType>(new TensorType());
b[5] = std::unique_ptr<TensorType>(new TensorType());
b[6] = std::unique_ptr<TensorType>(new TensorType());
b[7] = std::unique_ptr<TensorType>(new TensorType());
b[5]->allocator()->init(TensorInfo(TensorShape(4096U), 1, dt, fixed_point_position));
b[6]->allocator()->init(TensorInfo(TensorShape(4096U), 1, dt, fixed_point_position));
b[7]->allocator()->init(TensorInfo(TensorShape(1000U), 1, dt, fixed_point_position));
if(_batches > 1)
{
w[5]->allocator()->init(TensorInfo(TensorShape(9216U * dt_size, 4096U / dt_size), 1, dt, fixed_point_position));
w[6]->allocator()->init(TensorInfo(TensorShape(4096U * dt_size, 4096U / dt_size), 1, dt, fixed_point_position));
w[7]->allocator()->init(TensorInfo(TensorShape(4096U * dt_size, 1000U / dt_size), 1, dt, fixed_point_position));
}
else
{
w[5]->allocator()->init(TensorInfo(TensorShape(4096U, 9216U), 1, dt, fixed_point_position));
w[6]->allocator()->init(TensorInfo(TensorShape(4096U, 4096U), 1, dt, fixed_point_position));
w[7]->allocator()->init(TensorInfo(TensorShape(1000U, 4096U), 1, dt, fixed_point_position));
}
}
}
void build()
{
input.allocator()->init(TensorInfo(TensorShape(227U, 227U, 3U, _batches), 1, dt, fixed_point_position));
output.allocator()->init(TensorInfo(TensorShape(1000U, _batches), 1, dt, fixed_point_position));
// Initialize intermediate tensors
// Layer 1
conv1_out.allocator()->init(TensorInfo(TensorShape(55U, 55U, 96U, _batches), 1, dt, fixed_point_position));
act1_out.allocator()->init(TensorInfo(TensorShape(55U, 55U, 96U, _batches), 1, dt, fixed_point_position));
norm1_out.allocator()->init(TensorInfo(TensorShape(55U, 55U, 96U, _batches), 1, dt, fixed_point_position));
pool1_out.allocator()->init(TensorInfo(TensorShape(27U, 27U, 96U, _batches), 1, dt, fixed_point_position));
pool11_out = std::unique_ptr<SubTensorType>(new SubTensorType(&pool1_out, TensorShape(27U, 27U, 48U, _batches), Coordinates()));
pool12_out = std::unique_ptr<SubTensorType>(new SubTensorType(&pool1_out, TensorShape(27U, 27U, 48U, _batches), Coordinates(0, 0, 48)));
// Layer 2
conv2_out.allocator()->init(TensorInfo(TensorShape(27U, 27U, 256U, _batches), 1, dt, fixed_point_position));
conv21_out = std::unique_ptr<SubTensorType>(new SubTensorType(&conv2_out, TensorShape(27U, 27U, 128U, _batches), Coordinates()));
conv22_out = std::unique_ptr<SubTensorType>(new SubTensorType(&conv2_out, TensorShape(27U, 27U, 128U, _batches), Coordinates(0, 0, 128)));
act2_out.allocator()->init(TensorInfo(TensorShape(27U, 27U, 256U, _batches), 1, dt, fixed_point_position));
norm2_out.allocator()->init(TensorInfo(TensorShape(27U, 27U, 256U, _batches), 1, dt, fixed_point_position));
pool2_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 256U, _batches), 1, dt, fixed_point_position));
// Layer 3
conv3_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 384U, _batches), 1, dt, fixed_point_position));
act3_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 384U, _batches), 1, dt, fixed_point_position));
act31_out = std::unique_ptr<SubTensorType>(new SubTensorType(&act3_out, TensorShape(13U, 13U, 192U, _batches), Coordinates()));
act32_out = std::unique_ptr<SubTensorType>(new SubTensorType(&act3_out, TensorShape(13U, 13U, 192U, _batches), Coordinates(0, 0, 192)));
// Layer 4
conv4_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 384U, _batches), 1, dt, fixed_point_position));
conv41_out = std::unique_ptr<SubTensorType>(new SubTensorType(&conv4_out, TensorShape(13U, 13U, 192U, _batches), Coordinates()));
conv42_out = std::unique_ptr<SubTensorType>(new SubTensorType(&conv4_out, TensorShape(13U, 13U, 192U, _batches), Coordinates(0, 0, 192)));
act4_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 384U, _batches), 1, dt, fixed_point_position));
act41_out = std::unique_ptr<SubTensorType>(new SubTensorType(&act4_out, TensorShape(13U, 13U, 192U, _batches), Coordinates()));
act42_out = std::unique_ptr<SubTensorType>(new SubTensorType(&act4_out, TensorShape(13U, 13U, 192U, _batches), Coordinates(0, 0, 192)));
// Layer 5
conv5_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 256U, _batches), 1, dt, fixed_point_position));
conv51_out = std::unique_ptr<SubTensorType>(new SubTensorType(&conv5_out, TensorShape(13U, 13U, 128U, _batches), Coordinates()));
conv52_out = std::unique_ptr<SubTensorType>(new SubTensorType(&conv5_out, TensorShape(13U, 13U, 128U, _batches), Coordinates(0, 0, 128)));
act5_out.allocator()->init(TensorInfo(TensorShape(13U, 13U, 256U, _batches), 1, dt, fixed_point_position));
pool5_out.allocator()->init(TensorInfo(TensorShape(6U, 6U, 256U, _batches), 1, dt, fixed_point_position));
// Layer 6
fc6_out.allocator()->init(TensorInfo(TensorShape(4096U, _batches), 1, dt, fixed_point_position));
act6_out.allocator()->init(TensorInfo(TensorShape(4096U, _batches), 1, dt, fixed_point_position));
// Layer 7
fc7_out.allocator()->init(TensorInfo(TensorShape(4096U, _batches), 1, dt, fixed_point_position));
act7_out.allocator()->init(TensorInfo(TensorShape(4096U, _batches), 1, dt, fixed_point_position));
// Layer 8
fc8_out.allocator()->init(TensorInfo(TensorShape(1000U, _batches), 1, dt, fixed_point_position));
// Allocate layers
{
// Layer 1
conv1 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
act1 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
norm1 = std::unique_ptr<NormalizationLayerFunction>(new NormalizationLayerFunction());
pool1 = std::unique_ptr<PoolingLayerFunction>(new PoolingLayerFunction());
// Layer 2
conv21 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
conv22 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
act2 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
norm2 = std::unique_ptr<NormalizationLayerFunction>(new NormalizationLayerFunction());
pool2 = std::unique_ptr<PoolingLayerFunction>(new PoolingLayerFunction());
// Layer 3
conv3 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
act3 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
// Layer 4
conv41 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
conv42 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
act4 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
// Layer 5
conv51 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
conv52 = std::unique_ptr<ConvolutionLayerFunction>(new ConvolutionLayerFunction());
act5 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
pool5 = std::unique_ptr<PoolingLayerFunction>(new PoolingLayerFunction());
// Layer 6
fc6 = std::unique_ptr<FullyConnectedLayerFunction>(new FullyConnectedLayerFunction());
act6 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
// Layer 7
fc7 = std::unique_ptr<FullyConnectedLayerFunction>(new FullyConnectedLayerFunction());
act7 = std::unique_ptr<ActivationLayerFunction>(new ActivationLayerFunction());
// Layer 8
fc8 = std::unique_ptr<FullyConnectedLayerFunction>(new FullyConnectedLayerFunction());
// Softmax
smx = std::unique_ptr<SoftmaxLayerFunction>(new SoftmaxLayerFunction());
}
// Configure Layers
{
// Layer 1
conv1->configure(&input, w[0].get(), b[0].get(), &conv1_out, PadStrideInfo(4, 4, 0, 0), WeightsInfo(_reshaped_weights, 11U));
act1->configure(&conv1_out, &act1_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
norm1->configure(&act1_out, &norm1_out, NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f));
pool1->configure(&norm1_out, &pool1_out, PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)));
// Layer 2
conv21->configure(pool11_out.get(), w21.get(), b21.get(), conv21_out.get(), PadStrideInfo(1, 1, 2, 2), WeightsInfo(_reshaped_weights, 5U));
conv22->configure(pool12_out.get(), w22.get(), b22.get(), conv22_out.get(), PadStrideInfo(1, 1, 2, 2), WeightsInfo(_reshaped_weights, 5U));
act2->configure(&conv2_out, &act2_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
norm2->configure(&act2_out, &norm2_out, NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f));
pool2->configure(&norm2_out, &pool2_out, PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)));
// Layer 3
conv3->configure(&pool2_out, w[2].get(), b[2].get(), &conv3_out, PadStrideInfo(1, 1, 1, 1), WeightsInfo(_reshaped_weights, 3U));
act3->configure(&conv3_out, &act3_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// Layer 4
conv41->configure(act31_out.get(), w41.get(), b41.get(), conv41_out.get(), PadStrideInfo(1, 1, 1, 1), WeightsInfo(_reshaped_weights, 3U));
conv42->configure(act32_out.get(), w42.get(), b42.get(), conv42_out.get(), PadStrideInfo(1, 1, 1, 1), WeightsInfo(_reshaped_weights, 3U));
act4->configure(&conv4_out, &act4_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// Layer 5
conv51->configure(act41_out.get(), w51.get(), b51.get(), conv51_out.get(), PadStrideInfo(1, 1, 1, 1), WeightsInfo(_reshaped_weights, 3U));
conv52->configure(act42_out.get(), w52.get(), b52.get(), conv52_out.get(), PadStrideInfo(1, 1, 1, 1), WeightsInfo(_reshaped_weights, 3U));
act5->configure(&conv5_out, &act5_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
pool5->configure(&act5_out, &pool5_out, PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)));
// Layer 6
fc6->configure(&pool5_out, w[5].get(), b[5].get(), &fc6_out, true, _reshaped_weights);
act6->configure(&fc6_out, &act6_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// Layer 7
fc7->configure(&act6_out, w[6].get(), b[6].get(), &fc7_out, true, _reshaped_weights);
act7->configure(&fc7_out, &act7_out, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// Layer 8
fc8->configure(&act7_out, w[7].get(), b[7].get(), &fc8_out, true, _reshaped_weights);
// Softmax
smx->configure(&fc8_out, &output);
}
}
void allocate()
{
input.allocator()->allocate();
output.allocator()->allocate();
for(auto &wi : w)
{
if(wi.get())
{
wi->allocator()->allocate();
}
}
for(auto &bi : b)
{
if(bi.get())
{
bi->allocator()->allocate();
}
}
if(_reshaped_weights)
{
dynamic_cast<TensorType *>(w21.get())->allocator()->allocate();
dynamic_cast<TensorType *>(w22.get())->allocator()->allocate();
dynamic_cast<TensorType *>(w41.get())->allocator()->allocate();
dynamic_cast<TensorType *>(w42.get())->allocator()->allocate();
dynamic_cast<TensorType *>(w51.get())->allocator()->allocate();
dynamic_cast<TensorType *>(w52.get())->allocator()->allocate();
}
conv1_out.allocator()->allocate();
act1_out.allocator()->allocate();
norm1_out.allocator()->allocate();
pool1_out.allocator()->allocate();
conv2_out.allocator()->allocate();
act2_out.allocator()->allocate();
norm2_out.allocator()->allocate();
pool2_out.allocator()->allocate();
conv3_out.allocator()->allocate();
act3_out.allocator()->allocate();
conv4_out.allocator()->allocate();
act4_out.allocator()->allocate();
conv5_out.allocator()->allocate();
act5_out.allocator()->allocate();
pool5_out.allocator()->allocate();
fc6_out.allocator()->allocate();
act6_out.allocator()->allocate();
fc7_out.allocator()->allocate();
act7_out.allocator()->allocate();
fc8_out.allocator()->allocate();
}
/** Fills the trainable parameters and input with random data. */
void fill_random()
{
library->fill_tensor_uniform(Accessor(input), 0);
if(!_reshaped_weights)
{
for(unsigned int i = 0; i < w.size(); ++i)
{
library->fill_tensor_uniform(Accessor(*w[i]), i + 1);
library->fill_tensor_uniform(Accessor(*b[i]), i + 10);
}
}
else
{
library->fill_tensor_uniform(Accessor(*w[0]), 1);
library->fill_tensor_uniform(Accessor(*w[2]), 2);
library->fill_tensor_uniform(Accessor(*w[5]), 3);
library->fill_tensor_uniform(Accessor(*b[5]), 4);
library->fill_tensor_uniform(Accessor(*w[6]), 5);
library->fill_tensor_uniform(Accessor(*b[6]), 6);
library->fill_tensor_uniform(Accessor(*w[7]), 7);
library->fill_tensor_uniform(Accessor(*b[7]), 8);
library->fill_tensor_uniform(Accessor(*dynamic_cast<TensorType *>(w21.get())), 9);
library->fill_tensor_uniform(Accessor(*dynamic_cast<TensorType *>(w22.get())), 10);
library->fill_tensor_uniform(Accessor(*dynamic_cast<TensorType *>(w41.get())), 11);
library->fill_tensor_uniform(Accessor(*dynamic_cast<TensorType *>(w42.get())), 12);
library->fill_tensor_uniform(Accessor(*dynamic_cast<TensorType *>(w51.get())), 13);
library->fill_tensor_uniform(Accessor(*dynamic_cast<TensorType *>(w52.get())), 14);
}
}
/** Get the classification results.
*
* @return Vector containing the classified labels
*/
std::vector<unsigned int> get_classifications()
{
std::vector<unsigned int> classified_labels;
Accessor output_accessor(output);
Window window;
window.set(Window::DimX, Window::Dimension(0, 1, 1));
for(unsigned int d = 1; d < output_accessor.shape().num_dimensions(); ++d)
{
window.set(d, Window::Dimension(0, output_accessor.shape()[d], 1));
}
execute_window_loop(window, [&](const Coordinates & id)
{
int max_idx = 0;
float val = 0;
const void *const out_ptr = output_accessor(id);
for(unsigned int l = 0; l < output_accessor.shape().x(); ++l)
{
float curr_val = reinterpret_cast<const float *>(out_ptr)[l];
if(curr_val > val)
{
max_idx = l;
val = curr_val;
}
}
classified_labels.push_back(max_idx);
});
return classified_labels;
}
/** Clear all allocated memory from the tensor objects */
void clear()
{
conv1.reset();
act1.reset();
norm1.reset();
pool1.reset();
conv21.reset();
conv22.reset();
act2.reset();
norm2.reset();
pool2.reset();
conv3.reset();
act3.reset();
conv41.reset();
conv42.reset();
act4.reset();
conv51.reset();
conv52.reset();
act5.reset();
pool5.reset();
fc6.reset();
act6.reset();
fc7.reset();
act7.reset();
fc8.reset();
smx.reset();
// Free allocations
input.allocator()->free();
output.allocator()->free();
for(auto &wi : w)
{
wi.reset();
}
for(auto &bi : b)
{
bi.reset();
}
w21.reset();
w22.reset();
b21.reset();
b21.reset();
w41.reset();
w42.reset();
b41.reset();
b42.reset();
w51.reset();
w52.reset();
b51.reset();
b52.reset();
conv1_out.allocator()->free();
act1_out.allocator()->free();
norm1_out.allocator()->free();
pool1_out.allocator()->free();
conv2_out.allocator()->free();
act2_out.allocator()->free();
norm2_out.allocator()->free();
pool2_out.allocator()->free();
conv3_out.allocator()->free();
act3_out.allocator()->free();
conv4_out.allocator()->free();
act4_out.allocator()->free();
conv5_out.allocator()->free();
act5_out.allocator()->free();
pool5_out.allocator()->free();
fc6_out.allocator()->free();
act6_out.allocator()->free();
fc7_out.allocator()->free();
act7_out.allocator()->free();
fc8_out.allocator()->free();
}
/** Runs the model */
void run()
{
// Layer 1
conv1->run();
act1->run();
norm1->run();
pool1->run();
// Layer 2
conv21->run();
conv22->run();
act2->run();
norm2->run();
pool2->run();
// Layer 3
conv3->run();
act3->run();
// Layer 4
conv41->run();
conv42->run();
act4->run();
// Layer 5
conv51->run();
conv52->run();
act5->run();
pool5->run();
// Layer 6
fc6->run();
act6->run();
// Layer 7
fc7->run();
act7->run();
// Layer 8
fc8->run();
// Softmax
smx->run();
}
private:
unsigned int _batches;
bool _reshaped_weights;
std::unique_ptr<ActivationLayerFunction> act1{ nullptr }, act2{ nullptr }, act3{ nullptr }, act4{ nullptr }, act5{ nullptr }, act6{ nullptr }, act7{ nullptr };
std::unique_ptr<ConvolutionLayerFunction> conv1{ nullptr }, conv21{ nullptr }, conv22{ nullptr }, conv3{ nullptr }, conv41{ nullptr }, conv42{ nullptr }, conv51{ nullptr }, conv52{ nullptr };
std::unique_ptr<FullyConnectedLayerFunction> fc6{ nullptr }, fc7{ nullptr }, fc8{};
std::unique_ptr<NormalizationLayerFunction> norm1{ nullptr }, norm2{ nullptr };
std::unique_ptr<PoolingLayerFunction> pool1{ nullptr }, pool2{ nullptr }, pool5{ nullptr };
std::unique_ptr<SoftmaxLayerFunction> smx{ nullptr };
TensorType input{}, output{};
std::array<std::unique_ptr<TensorType>, 8> w{}, b{};
std::unique_ptr<ITensorType> w21{ nullptr }, w22{ nullptr }, b21{ nullptr }, b22{ nullptr };
std::unique_ptr<ITensorType> w41{ nullptr }, w42{ nullptr }, b41{ nullptr }, b42{ nullptr };
std::unique_ptr<ITensorType> w51{ nullptr }, w52{ nullptr }, b51{ nullptr }, b52{ nullptr };
TensorType conv1_out{}, act1_out{}, norm1_out{}, pool1_out{};
TensorType conv2_out{}, act2_out{}, pool2_out{}, norm2_out{};
TensorType conv3_out{}, act3_out{};
TensorType conv4_out{}, act4_out{};
TensorType conv5_out{}, act5_out{}, pool5_out{};
TensorType fc6_out{}, act6_out{};
TensorType fc7_out{}, act7_out{};
TensorType fc8_out{};
std::unique_ptr<SubTensorType> pool11_out{ nullptr }, pool12_out{ nullptr };
std::unique_ptr<SubTensorType> conv21_out{ nullptr }, conv22_out{ nullptr };
std::unique_ptr<SubTensorType> act31_out{ nullptr }, act32_out{ nullptr };
std::unique_ptr<SubTensorType> conv41_out{ nullptr }, conv42_out{ nullptr }, act41_out{ nullptr }, act42_out{ nullptr };
std::unique_ptr<SubTensorType> conv51_out{ nullptr }, conv52_out{ nullptr };
};
} // namespace model_objects
} // namespace test
} // namespace arm_compute
#endif //__ARM_COMPUTE_TEST_MODEL_OBJECTS_ALEXNET_H__