blob: abb41e9f70f777e7fd0e884d50e425bef7631844 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include <algorithm>
#include <cmath>
using namespace arm_compute;
NEFullyConnectedLayerReshapeWeights::NEFullyConnectedLayerReshapeWeights()
: _transpose_kernel(), _transpose1xW_kernel(), _transpose_output(), _transpose_weights(false), _is_batched_fc_layer(false)
{
}
void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output, bool transpose_weights, bool is_batched_fc_layer)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F32);
ARM_COMPUTE_ERROR_ON(output == nullptr);
ARM_COMPUTE_ERROR_ON(input->info()->num_dimensions() != 2);
ARM_COMPUTE_ERROR_ON((transpose_weights == false) && (is_batched_fc_layer == false));
const DataType dt = input->info()->data_type();
const int fixed_point_position = input->info()->fixed_point_position();
_transpose_weights = transpose_weights;
_is_batched_fc_layer = is_batched_fc_layer;
// Check if we need to transpose the weights
if(_transpose_weights)
{
if(_is_batched_fc_layer)
{
// Initialize the output tensor for transpose
TensorShape shape_transposed(input->info()->dimension(1), input->info()->dimension(0));
_transpose_output.allocator()->init(TensorInfo(shape_transposed, 1, dt, fixed_point_position));
_transpose_kernel.configure(input, &_transpose_output);
// Configure transpose 1xW kernel
_transpose1xW_kernel.configure(&_transpose_output, output);
// Allocate temporary tensor used for transposing the weights
_transpose_output.allocator()->allocate();
}
else
{
_transpose_kernel.configure(input, output);
}
}
else
{
if(_is_batched_fc_layer)
{
// Configure transpose 1xW kernel
_transpose1xW_kernel.configure(input, output);
}
else
{
ARM_COMPUTE_ERROR("Configuration transpose_weights=false & is_batched_fc_layer=false not supported");
}
}
}
void NEFullyConnectedLayerReshapeWeights::run()
{
if(_transpose_weights)
{
NEScheduler::get().schedule(&_transpose_kernel, Window::DimY);
}
if(_is_batched_fc_layer)
{
NEScheduler::get().schedule(&_transpose1xW_kernel, Window::DimY);
}
}
NEFullyConnectedLayer::NEFullyConnectedLayer()
: _im2col_kernel(), _reshape_weights_kernel(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _reshape_weights_output(),
_are_weights_reshaped(false), _is_fc_after_conv(false), _is_batched_fc_layer(false), _accumulate_biases(false)
{
}
void NEFullyConnectedLayer::configure_conv_fc_wb(const ITensor *input, const ITensor *weights, ITensor *output)
{
ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2) * (16 / weights->info()->element_size())));
const DataType dt = input->info()->data_type();
const int fixed_point_position = input->info()->fixed_point_position();
// If the fully connected layer is called after a convolution layer, the input tensor must be linearized
// Initialize output tensor for im2col
TensorShape shape_im2col;
shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2));
shape_im2col.set(1, input->info()->dimension(3));
shape_im2col.set(2, input->info()->dimension(4));
shape_im2col.set(3, input->info()->dimension(5));
_im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
// Initialize output tensor for interleave 4x4
TensorShape shape_interleaved = _im2col_output.info()->tensor_shape();
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
_interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
// Configure im2col kernel
_im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false);
// Configure interleave4x4 kernel
_interleave4x4_kernel.configure(&_im2col_output, &_interleave4x4_output);
// Configure matrix multiply kernel
_mm_kernel.configure(&_interleave4x4_output, weights, output, 1.0f);
// Allocate the tensors once all the configure methods have been called
_im2col_output.allocator()->allocate();
_interleave4x4_output.allocator()->allocate();
}
void NEFullyConnectedLayer::configure_fc_fc_wb(const ITensor *input, const ITensor *weights, ITensor *output)
{
const DataType dt = input->info()->data_type();
const int fixed_point_position = input->info()->fixed_point_position();
// Initialize output tensor for interleave 4x4
TensorShape shape_interleaved = input->info()->tensor_shape();
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
_interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
// Configure interleave4x4 kernel
_interleave4x4_kernel.configure(input, &_interleave4x4_output);
// Configure matrix multiply kernel
_mm_kernel.configure(&_interleave4x4_output, weights, output, 1.0f);
// Allocate the tensors once all the configure methods have been called
_interleave4x4_output.allocator()->allocate();
}
void NEFullyConnectedLayer::configure_conv_fc_nb(const ITensor *input, const ITensor *weights, ITensor *output)
{
ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
const DataType dt = input->info()->data_type();
const int fixed_point_position = input->info()->fixed_point_position();
// If the fully connected layer is called after a convolution layer, the input tensor must be linearized
// Initialize output tensor for im2col
TensorShape shape_im2col;
shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2));
shape_im2col.set(1, 1);
_im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
// Configure im2col kernel
_im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false);
// Configure matrix multiply kernel
_mm_kernel.configure(&_im2col_output, weights, output, 1.0f);
// Allocate the output tensor for im2col once all the configure methods have been called
_im2col_output.allocator()->allocate();
}
void NEFullyConnectedLayer::configure_fc_fc_nb(const ITensor *input, const ITensor *weights, ITensor *output)
{
ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
// Configure matrix multiply kernel
_mm_kernel.configure(input, weights, output, 1.0f);
}
void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose_weights, bool are_weights_reshaped)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::F32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QS8, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() != 2);
const DataType dt = input->info()->data_type();
const int fixed_point_position = input->info()->fixed_point_position();
_are_weights_reshaped = are_weights_reshaped;
_is_fc_after_conv = true;
_is_batched_fc_layer = false;
_accumulate_biases = false;
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
_accumulate_biases = true;
// Configure accumulate biases kernel
_accumulate_biases_kernel.configure(output, biases);
}
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
// Check if we have a fully connected layer with batches
_is_batched_fc_layer = (output->info()->dimension(1) > 1);
const ITensor *weights_to_use = weights;
if(!are_weights_reshaped)
{
if((transpose_weights || _is_batched_fc_layer))
{
weights_to_use = &_reshape_weights_output;
if(transpose_weights)
{
if(_is_batched_fc_layer)
{
const float transpose_width = 16.0f / input->info()->element_size();
TensorShape shape_wt(weights->info()->dimension(0) * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(weights->info()->dimension(1) / transpose_width)));
TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position);
_reshape_weights_output.allocator()->init(info_wt);
}
else
{
TensorShape shape_wt(weights->info()->dimension(1), weights->info()->dimension(0));
TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position);
_reshape_weights_output.allocator()->init(info_wt);
}
}
else
{
ARM_COMPUTE_ERROR_ON(!_is_batched_fc_layer);
const float transpose_width = 16.0f / input->info()->element_size();
TensorShape shape_wt(weights->info()->dimension(1) * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(weights->info()->dimension(0) / transpose_width)));
TensorInfo info_wt(shape_wt, 1, dt, fixed_point_position);
_reshape_weights_output.allocator()->init(info_wt);
}
// Reshape the weights
_reshape_weights_kernel.configure(weights, &_reshape_weights_output, transpose_weights, _is_batched_fc_layer);
}
}
if(_is_batched_fc_layer)
{
_is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
input->info()->tensor_shape().cend(),
output->info()->tensor_shape().cbegin() + 1));
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer with batches
configure_conv_fc_wb(input, weights_to_use, output);
}
else
{
// Fully Connected layer after a Fully Connected Layer with batches
configure_fc_fc_wb(input, weights_to_use, output);
}
}
else
{
// In case of not batched fully connected layer, the weights will not be reshaped using transposed1xW
_is_fc_after_conv = ((weights_to_use->info()->dimension(1)) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)));
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
configure_conv_fc_nb(input, weights_to_use, output);
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
configure_fc_fc_nb(input, weights_to_use, output);
}
}
// Allocate the transpose tensor if the are_weights_reshaped flag is false and once all the configure methods have been called
if(!are_weights_reshaped)
{
if(transpose_weights || _is_batched_fc_layer)
{
// Allocate the tensor for the weights reshaped
_reshape_weights_output.allocator()->allocate();
}
}
}
void NEFullyConnectedLayer::run()
{
// Reshape of the weights (happens only once)
if(!_are_weights_reshaped)
{
_are_weights_reshaped = true;
_reshape_weights_kernel.run();
}
// Linearize input if comes from a convolutional layer
if(_is_fc_after_conv)
{
NEScheduler::get().schedule(&_im2col_kernel, Window::DimY);
}
// Interleave input
if(_is_batched_fc_layer)
{
NEScheduler::get().schedule(&_interleave4x4_kernel, Window::DimY);
}
// Run matrix multiply
NEScheduler::get().schedule(&_mm_kernel, _is_batched_fc_layer ? Window::DimY : Window::DimX);
// Accumulate biases if provided
if(_accumulate_biases)
{
NEScheduler::get().schedule(&_accumulate_biases_kernel, Window::DimY);
}
}