blob: 585676bb8758d9b865fa287dc0d38de66564da56 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEHarrisCornersKernel.h"
#include "arm_compute/core/Coordinates.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <algorithm>
#include <arm_neon.h>
#include <cmath>
#include <cstddef>
using namespace arm_compute;
#ifdef ARM_COMPUTE_ENABLE_FP16
template class arm_compute::NEHarrisScoreFP16Kernel<3>;
template class arm_compute::NEHarrisScoreFP16Kernel<5>;
template class arm_compute::NEHarrisScoreFP16Kernel<7>;
namespace fp16
{
inline float16x8_t harris_score(float16x8_t gx2, float16x8_t gy2, float16x8_t gxgy, float sensitivity, float strength_thresh)
{
static const float16x8_t zero = vdupq_n_f16(0.f);
// Trace^2
float16x8_t trace2 = vaddq_f16(gx2, gy2);
trace2 = vmulq_f16(trace2, trace2);
// Det(A)
float16x8_t det = vmulq_f16(gx2, gy2);
det = vfmsq_f16(det, gxgy, gxgy);
// Det(A) - sensitivity * trace^2
const float16x8_t mc = vfmsq_f16(det, vdupq_n_f16(sensitivity), trace2);
// mc > strength_thresh
const uint16x8_t mask = vcgtq_f16(mc, vdupq_n_f16(strength_thresh));
return vbslq_f16(mask, mc, zero);
}
template <size_t block_size>
inline void harris_score1xN_FLOAT_FLOAT_FLOAT(float16x8_t low_gx, float16x8_t low_gy, float16x8_t high_gx, float16x8_t high_gy, float16x8_t &gx2, float16x8_t &gy2, float16x8_t &gxgy,
float norm_factor)
{
const float16x8_t norm_factor_fp16 = vdupq_n_f16(norm_factor);
// Normalize
low_gx = vmulq_f16(low_gx, norm_factor_fp16);
low_gy = vmulq_f16(low_gy, norm_factor_fp16);
high_gx = vmulq_f16(high_gx, norm_factor_fp16);
high_gy = vmulq_f16(high_gy, norm_factor_fp16);
float16x8_t gx = vextq_f16(low_gx, high_gx, 0);
float16x8_t gy = vextq_f16(low_gy, high_gy, 0);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
gx = vextq_f16(low_gx, high_gx, 1);
gy = vextq_f16(low_gy, high_gy, 1);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
gx = vextq_f16(low_gx, high_gx, 2);
gy = vextq_f16(low_gy, high_gy, 2);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
if(block_size > 3)
{
gx = vextq_f16(low_gx, high_gx, 3);
gy = vextq_f16(low_gy, high_gy, 3);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
gx = vextq_f16(low_gx, high_gx, 4);
gy = vextq_f16(low_gy, high_gy, 4);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
}
if(block_size == 7)
{
gx = vextq_f16(low_gx, high_gx, 5);
gy = vextq_f16(low_gy, high_gy, 5);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
gx = vextq_f16(low_gx, high_gx, 6);
gy = vextq_f16(low_gy, high_gy, 6);
gx2 = vfmaq_f16(gx2, gx, gx);
gy2 = vfmaq_f16(gy2, gy, gy);
gxgy = vfmaq_f16(gxgy, gx, gy);
}
}
template <size_t block_size>
inline void harris_score_S16_S16_FLOAT(const void *__restrict in1_ptr, const void *__restrict in2_ptr, void *__restrict out_ptr, int32_t in_stride, float norm_factor, float sensitivity,
float strength_thresh)
{
auto gx_ptr_0 = static_cast<const int16_t *__restrict>(in1_ptr) - (block_size / 2) * (in_stride + 1);
auto gy_ptr_0 = static_cast<const int16_t *__restrict>(in2_ptr) - (block_size / 2) * (in_stride + 1);
const int16_t *gx_ptr_1 = gx_ptr_0 + 8;
const int16_t *gy_ptr_1 = gy_ptr_0 + 8;
const auto output = static_cast<float *__restrict>(out_ptr);
// Gx^2, Gy^2 and Gx*Gy
float16x8_t gx2 = vdupq_n_f16(0.0f);
float16x8_t gy2 = vdupq_n_f16(0.0f);
float16x8_t gxgy = vdupq_n_f16(0.0f);
for(size_t i = 0; i < block_size; ++i)
{
const float16x8_t low_gx = vcvtq_f16_s16(vld1q_s16(gx_ptr_0));
const float16x8_t high_gx = vcvtq_f16_s16(vld1q_s16(gx_ptr_1));
const float16x8_t low_gy = vcvtq_f16_s16(vld1q_s16(gy_ptr_0));
const float16x8_t high_gy = vcvtq_f16_s16(vld1q_s16(gy_ptr_1));
harris_score1xN_FLOAT_FLOAT_FLOAT<block_size>(low_gx, low_gy, high_gx, high_gy, gx2, gy2, gxgy, norm_factor);
// Update gx and gy pointer
gx_ptr_0 += in_stride;
gy_ptr_0 += in_stride;
gx_ptr_1 += in_stride;
gy_ptr_1 += in_stride;
}
// Calculate harris score
const float16x8_t mc = harris_score(gx2, gy2, gxgy, sensitivity, strength_thresh);
// Store score
vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(mc)));
vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(mc)));
}
template <size_t block_size>
inline void harris_score_S32_S32_FLOAT(const void *__restrict in1_ptr, const void *__restrict in2_ptr, void *__restrict out_ptr, int32_t in_stride, float norm_factor, float sensitivity,
float strength_thresh)
{
static const float16x8_t zero = vdupq_n_f16(0.0f);
auto gx_ptr_0 = static_cast<const int32_t *__restrict>(in1_ptr) - (block_size / 2) * (in_stride + 1);
auto gy_ptr_0 = static_cast<const int32_t *__restrict>(in2_ptr) - (block_size / 2) * (in_stride + 1);
const int32_t *gx_ptr_1 = gx_ptr_0 + 4;
const int32_t *gy_ptr_1 = gy_ptr_0 + 4;
const int32_t *gx_ptr_2 = gx_ptr_0 + 8;
const int32_t *gy_ptr_2 = gy_ptr_0 + 8;
const auto output = static_cast<float *__restrict>(out_ptr);
// Gx^2, Gy^2 and Gx*Gy
float16x8_t gx2 = zero;
float16x8_t gy2 = zero;
float16x8_t gxgy = zero;
for(size_t i = 0; i < block_size; ++i)
{
const float16x8_t low_gx = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_0))),
vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_1))));
const float16x8_t high_gx = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_2))),
vget_low_f16(zero));
const float16x8_t low_gy = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_0))),
vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_1))));
const float16x8_t high_gy = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_2))),
vget_low_f16(zero));
harris_score1xN_FLOAT_FLOAT_FLOAT<block_size>(low_gx, low_gy, high_gx, high_gy, gx2, gy2, gxgy, norm_factor);
// Update gx and gy pointer
gx_ptr_0 += in_stride;
gy_ptr_0 += in_stride;
gx_ptr_1 += in_stride;
gy_ptr_1 += in_stride;
gx_ptr_2 += in_stride;
gy_ptr_2 += in_stride;
}
// Calculate harris score
const float16x8_t mc = harris_score(gx2, gy2, gxgy, sensitivity, strength_thresh);
// Store score
vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(mc)));
vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(mc)));
}
template <>
inline void harris_score_S32_S32_FLOAT<7>(const void *__restrict in1_ptr, const void *__restrict in2_ptr, void *__restrict out_ptr, int32_t in_stride, float norm_factor, float sensitivity,
float strength_thresh)
{
static const float16x8_t zero = vdupq_n_f16(0.0f);
auto gx_ptr_0 = static_cast<const int32_t *__restrict>(in1_ptr) - 3 * (in_stride + 1);
auto gy_ptr_0 = static_cast<const int32_t *__restrict>(in2_ptr) - 3 * (in_stride + 1);
const int32_t *gx_ptr_1 = gx_ptr_0 + 4;
const int32_t *gy_ptr_1 = gy_ptr_0 + 4;
const int32_t *gx_ptr_2 = gx_ptr_0 + 8;
const int32_t *gy_ptr_2 = gy_ptr_0 + 8;
const int32_t *gx_ptr_3 = gx_ptr_0 + 12;
const int32_t *gy_ptr_3 = gy_ptr_0 + 12;
const auto output = static_cast<float *__restrict>(out_ptr);
// Gx^2, Gy^2 and Gx*Gy
float16x8_t gx2 = zero;
float16x8_t gy2 = zero;
float16x8_t gxgy = zero;
for(size_t i = 0; i < 7; ++i)
{
const float16x8_t low_gx = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_0))),
vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_1))));
const float16x8_t high_gx = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_2))),
vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gx_ptr_3))));
const float16x8_t low_gy = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_0))),
vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_1))));
const float16x8_t high_gy = vcombine_f16(vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_2))),
vcvt_f16_f32(vcvtq_f32_s32(vld1q_s32(gy_ptr_3))));
harris_score1xN_FLOAT_FLOAT_FLOAT<7>(low_gx, low_gy, high_gx, high_gy, gx2, gy2, gxgy, norm_factor);
// Update gx and gy pointer
gx_ptr_0 += in_stride;
gy_ptr_0 += in_stride;
gx_ptr_1 += in_stride;
gy_ptr_1 += in_stride;
gx_ptr_2 += in_stride;
gy_ptr_2 += in_stride;
}
// Calculate harris score
const float16x8_t mc = harris_score(gx2, gy2, gxgy, sensitivity, strength_thresh);
// Store score
vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(mc)));
vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(mc)));
}
} // namespace fp16
template <int32_t block_size>
BorderSize NEHarrisScoreFP16Kernel<block_size>::border_size() const
{
return _border_size;
}
template <int32_t block_size>
NEHarrisScoreFP16Kernel<block_size>::NEHarrisScoreFP16Kernel()
: INEHarrisScoreKernel(), _func(nullptr)
{
}
template <int32_t block_size>
void NEHarrisScoreFP16Kernel<block_size>::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
Iterator input1(_input1, window);
Iterator input2(_input2, window);
Iterator output(_output, window);
const size_t input_stride = _input1->info()->strides_in_bytes()[1] / element_size_from_data_type(_input1->info()->data_type());
execute_window_loop(window, [&](const Coordinates & id)
{
(*_func)(input1.ptr(), input2.ptr(), output.ptr(), input_stride, _norm_factor, _sensitivity, _strength_thresh);
},
input1, input2, output);
}
template <int32_t block_size>
void NEHarrisScoreFP16Kernel<block_size>::configure(const IImage *input1, const IImage *input2, IImage *output, float norm_factor, float strength_thresh, float sensitivity,
bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input1);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input2);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(output);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::S16, DataType::S32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::S16, DataType::S32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
ARM_COMPUTE_ERROR_ON(0.0f == norm_factor);
_input1 = input1;
_input2 = input2;
_output = output;
_sensitivity = sensitivity;
_strength_thresh = strength_thresh;
_norm_factor = norm_factor;
_border_size = BorderSize(block_size / 2);
if(input1->info()->data_type() == DataType::S16)
{
_func = &fp16::harris_score_S16_S16_FLOAT<block_size>;
}
else
{
_func = &fp16::harris_score_S32_S32_FLOAT<block_size>;
}
ARM_COMPUTE_ERROR_ON(nullptr == _func);
constexpr unsigned int num_elems_processed_per_iteration = 8;
constexpr unsigned int num_elems_read_per_iteration = 16;
constexpr unsigned int num_elems_written_per_iteration = 8;
constexpr unsigned int num_rows_read_per_iteration = block_size;
// Configure kernel window
Window win = calculate_max_window(*input1->info(), Steps(num_elems_processed_per_iteration), border_undefined, border_size());
AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration);
update_window_and_padding(win,
AccessWindowRectangle(input1->info(), -_border_size.left, -_border_size.top, num_elems_read_per_iteration, num_rows_read_per_iteration),
AccessWindowRectangle(input2->info(), -_border_size.left, -_border_size.top, num_elems_read_per_iteration, num_rows_read_per_iteration),
output_access);
ValidRegion valid_region = intersect_valid_regions(input1->info()->valid_region(),
input2->info()->valid_region());
output_access.set_valid_region(win, valid_region, border_undefined, border_size());
INEKernel::configure(win);
}
#endif
template class arm_compute::NEHarrisScoreKernel<3>;
template class arm_compute::NEHarrisScoreKernel<5>;
template class arm_compute::NEHarrisScoreKernel<7>;
template arm_compute::NEHarrisScoreKernel<3>::NEHarrisScoreKernel();
template arm_compute::NEHarrisScoreKernel<5>::NEHarrisScoreKernel();
template arm_compute::NEHarrisScoreKernel<7>::NEHarrisScoreKernel();
namespace
{
inline float32x4_t harris_score(float32x4_t gx2, float32x4_t gy2, float32x4_t gxgy, float32x4_t sensitivity, float32x4_t strength_thresh)
{
// Trace^2
float32x4_t trace2 = vaddq_f32(gx2, gy2);
trace2 = vmulq_f32(trace2, trace2);
// Det(A)
float32x4_t det = vmulq_f32(gx2, gy2);
det = vmlsq_f32(det, gxgy, gxgy);
// Det(A) - sensitivity * trace^2
const float32x4_t mc = vmlsq_f32(det, sensitivity, trace2);
// mc > strength_thresh
const uint32x4_t mask = vcgtq_f32(mc, strength_thresh);
return vbslq_f32(mask, mc, vdupq_n_f32(0.0f));
}
inline void harris_score1x3_FLOAT_FLOAT_FLOAT(float32x4_t low_gx, float32x4_t low_gy, float32x4_t high_gx, float32x4_t high_gy, float32x4_t &gx2, float32x4_t &gy2, float32x4_t &gxgy,
float32x4_t norm_factor)
{
// Normalize
low_gx = vmulq_f32(low_gx, norm_factor);
low_gy = vmulq_f32(low_gy, norm_factor);
high_gx = vmulq_f32(high_gx, norm_factor);
high_gy = vmulq_f32(high_gy, norm_factor);
const float32x4_t l_gx = low_gx;
const float32x4_t l_gy = low_gy;
const float32x4_t m_gx = vextq_f32(low_gx, high_gx, 1);
const float32x4_t m_gy = vextq_f32(low_gy, high_gy, 1);
const float32x4_t r_gx = vextq_f32(low_gx, high_gx, 2);
const float32x4_t r_gy = vextq_f32(low_gy, high_gy, 2);
// Gx*Gx
gx2 = vmlaq_f32(gx2, l_gx, l_gx);
gx2 = vmlaq_f32(gx2, m_gx, m_gx);
gx2 = vmlaq_f32(gx2, r_gx, r_gx);
// Gy*Gy
gy2 = vmlaq_f32(gy2, l_gy, l_gy);
gy2 = vmlaq_f32(gy2, m_gy, m_gy);
gy2 = vmlaq_f32(gy2, r_gy, r_gy);
// Gx*Gy
gxgy = vmlaq_f32(gxgy, l_gx, l_gy);
gxgy = vmlaq_f32(gxgy, m_gx, m_gy);
gxgy = vmlaq_f32(gxgy, r_gx, r_gy);
}
inline void harris_score1x5_FLOAT_FLOAT_FLOAT(float32x4_t low_gx, float32x4_t low_gy, float32x4_t high_gx, float32x4_t high_gy, float32x4_t &gx2, float32x4_t &gy2, float32x4_t &gxgy,
float32x4_t norm_factor)
{
// Normalize
low_gx = vmulq_f32(low_gx, norm_factor);
low_gy = vmulq_f32(low_gy, norm_factor);
high_gx = vmulq_f32(high_gx, norm_factor);
high_gy = vmulq_f32(high_gy, norm_factor);
// L2 values
float32x4_t gx = low_gx;
float32x4_t gy = low_gy;
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// L1 values
gx = vextq_f32(low_gx, high_gx, 1);
gy = vextq_f32(low_gy, high_gy, 1);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// M values
gx = vextq_f32(low_gx, high_gx, 2);
gy = vextq_f32(low_gy, high_gy, 2);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// R1 values
gx = vextq_f32(low_gx, high_gx, 3);
gy = vextq_f32(low_gy, high_gy, 3);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// R2 values
gx = high_gx;
gy = high_gy;
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
}
inline void harris_score1x7_FLOAT_FLOAT_FLOAT(float32x4_t low_gx, float32x4_t low_gy, float32x4_t high_gx, float32x4_t high_gy, float32x4_t high_gx1, float32x4_t high_gy1, float32x4_t &gx2,
float32x4_t &gy2, float32x4_t &gxgy, float32x4_t norm_factor)
{
// Normalize
low_gx = vmulq_f32(low_gx, norm_factor);
low_gy = vmulq_f32(low_gy, norm_factor);
high_gx = vmulq_f32(high_gx, norm_factor);
high_gy = vmulq_f32(high_gy, norm_factor);
// L3 values
float32x4_t gx = low_gx;
float32x4_t gy = low_gy;
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// L2 values
gx = vextq_f32(low_gx, high_gx, 1);
gy = vextq_f32(low_gy, high_gy, 1);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// L1 values
gx = vextq_f32(low_gx, high_gx, 2);
gy = vextq_f32(low_gy, high_gy, 2);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// M values
gx = vextq_f32(low_gx, high_gx, 3);
gy = vextq_f32(low_gy, high_gy, 3);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// R1 values
gx = high_gx;
gy = high_gy;
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// Change tmp_low and tmp_high for calculating R2 and R3 values
low_gx = high_gx;
low_gy = high_gy;
high_gx = high_gx1;
high_gy = high_gy1;
// Normalize
high_gx = vmulq_f32(high_gx, norm_factor);
high_gy = vmulq_f32(high_gy, norm_factor);
// R2 values
gx = vextq_f32(low_gx, high_gx, 1);
gy = vextq_f32(low_gy, high_gy, 1);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
// R3 values
gx = vextq_f32(low_gx, high_gx, 2);
gy = vextq_f32(low_gy, high_gy, 2);
// Accumulate
gx2 = vmlaq_f32(gx2, gx, gx);
gy2 = vmlaq_f32(gy2, gy, gy);
gxgy = vmlaq_f32(gxgy, gx, gy);
}
inline void harris_score3x3_S16_S16_FLOAT(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int32_t input_stride,
float in_norm_factor, float in_sensitivity, float in_strength_thresh)
{
const auto gx_ptr_0 = static_cast<const int16_t *__restrict>(input1_ptr) - 1;
const auto gy_ptr_0 = static_cast<const int16_t *__restrict>(input2_ptr) - 1;
const int16_t *gx_ptr_1 = gx_ptr_0 + 4;
const int16_t *gy_ptr_1 = gy_ptr_0 + 4;
const auto output = static_cast<float *__restrict>(output_ptr);
// Gx^2, Gy^2 and Gx*Gy
float32x4x2_t gx2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gy2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gxgy =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
// Row0
int16x8x2_t tmp_gx =
{
{
vld1q_s16(gx_ptr_0 - input_stride),
vld1q_s16(gx_ptr_1 - input_stride)
}
};
int16x8x2_t tmp_gy =
{
{
vld1q_s16(gy_ptr_0 - input_stride),
vld1q_s16(gy_ptr_1 - input_stride)
}
};
float32x4_t sensitivity = vdupq_n_f32(in_sensitivity);
float32x4_t norm_factor = vdupq_n_f32(in_norm_factor);
float32x4_t strength_thresh = vdupq_n_f32(in_strength_thresh);
float32x4_t low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[0])));
float32x4_t low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[0])));
float32x4_t high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[0])));
float32x4_t high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[0])));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[1])));
low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[1])));
high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[1])));
high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[1])));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Row1
tmp_gx.val[0] = vld1q_s16(gx_ptr_0);
tmp_gy.val[0] = vld1q_s16(gy_ptr_0);
tmp_gx.val[1] = vld1q_s16(gx_ptr_1);
tmp_gy.val[1] = vld1q_s16(gy_ptr_1);
low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[0])));
low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[0])));
high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[0])));
high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[0])));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[1])));
low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[1])));
high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[1])));
high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[1])));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Row2
tmp_gx.val[0] = vld1q_s16(gx_ptr_0 + input_stride);
tmp_gy.val[0] = vld1q_s16(gy_ptr_0 + input_stride);
tmp_gx.val[1] = vld1q_s16(gx_ptr_1 + input_stride);
tmp_gy.val[1] = vld1q_s16(gy_ptr_1 + input_stride);
low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[0])));
low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[0])));
high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[0])));
high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[0])));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[1])));
low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[1])));
high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[1])));
high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[1])));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Calculate harris score
const float32x4x2_t mc =
{
{
harris_score(gx2.val[0], gy2.val[0], gxgy.val[0], sensitivity, strength_thresh),
harris_score(gx2.val[1], gy2.val[1], gxgy.val[1], sensitivity, strength_thresh)
}
};
// Store score
vst1q_f32(output + 0, mc.val[0]);
vst1q_f32(output + 4, mc.val[1]);
}
inline void harris_score3x3_S32_S32_FLOAT(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int32_t input_stride,
float in_norm_factor, float in_sensitivity, float in_strength_thresh)
{
auto gx_ptr_0 = static_cast<const int32_t *__restrict>(input1_ptr) - 1;
auto gy_ptr_0 = static_cast<const int32_t *__restrict>(input2_ptr) - 1;
const int32_t *gx_ptr_1 = gx_ptr_0 + 4;
const int32_t *gy_ptr_1 = gy_ptr_0 + 4;
const int32_t *gx_ptr_2 = gx_ptr_0 + 8;
const int32_t *gy_ptr_2 = gy_ptr_0 + 8;
const auto output = static_cast<float *__restrict>(output_ptr);
float32x4_t sensitivity = vdupq_n_f32(in_sensitivity);
float32x4_t norm_factor = vdupq_n_f32(in_norm_factor);
float32x4_t strength_thresh = vdupq_n_f32(in_strength_thresh);
// Gx^2, Gy^2 and Gx*Gy
float32x4x2_t gx2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gy2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gxgy =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
// Row0
float32x4_t low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_0 - input_stride));
float32x4_t low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_0 - input_stride));
float32x4_t high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1 - input_stride));
float32x4_t high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1 - input_stride));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1 - input_stride));
low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1 - input_stride));
high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_2 - input_stride));
high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_2 - input_stride));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Row1
low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_0));
low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_0));
high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1));
high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1));
low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1));
high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_2));
high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_2));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Row2
low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_0 + input_stride));
low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_0 + input_stride));
high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1 + input_stride));
high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1 + input_stride));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1 + input_stride));
low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1 + input_stride));
high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_2 + input_stride));
high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_2 + input_stride));
harris_score1x3_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Calculate harris score
const float32x4x2_t mc =
{
{
harris_score(gx2.val[0], gy2.val[0], gxgy.val[0], sensitivity, strength_thresh),
harris_score(gx2.val[1], gy2.val[1], gxgy.val[1], sensitivity, strength_thresh)
}
};
// Store score
vst1q_f32(output + 0, mc.val[0]);
vst1q_f32(output + 4, mc.val[1]);
}
inline void harris_score5x5_S16_S16_FLOAT(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int32_t input_stride,
float in_norm_factor, float in_sensitivity, float in_strength_thresh)
{
auto gx_ptr_0 = static_cast<const int16_t *__restrict>(input1_ptr) - 2 - 2 * input_stride;
auto gy_ptr_0 = static_cast<const int16_t *__restrict>(input2_ptr) - 2 - 2 * input_stride;
const int16_t *gx_ptr_1 = gx_ptr_0 + 4;
const int16_t *gy_ptr_1 = gy_ptr_0 + 4;
const auto output = static_cast<float *__restrict>(output_ptr);
// Gx^2, Gy^2 and Gx*Gy
float32x4x2_t gx2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gy2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gxgy =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4_t sensitivity = vdupq_n_f32(in_sensitivity);
float32x4_t norm_factor = vdupq_n_f32(in_norm_factor);
float32x4_t strength_thresh = vdupq_n_f32(in_strength_thresh);
for(int i = 0; i < 5; ++i)
{
const int16x8x2_t tmp_gx =
{
{
vld1q_s16(gx_ptr_0),
vld1q_s16(gx_ptr_1)
}
};
const int16x8x2_t tmp_gy =
{
{
vld1q_s16(gy_ptr_0),
vld1q_s16(gy_ptr_1)
}
};
float32x4_t low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[0])));
float32x4_t low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[0])));
float32x4_t high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[0])));
float32x4_t high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[0])));
harris_score1x5_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gx.val[1])));
low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp_gy.val[1])));
high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gx.val[1])));
high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp_gy.val[1])));
harris_score1x5_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Update gx and gy pointer
gx_ptr_0 += input_stride;
gy_ptr_0 += input_stride;
gx_ptr_1 += input_stride;
gy_ptr_1 += input_stride;
}
// Calculate harris score
const float32x4x2_t mc =
{
{
harris_score(gx2.val[0], gy2.val[0], gxgy.val[0], sensitivity, strength_thresh),
harris_score(gx2.val[1], gy2.val[1], gxgy.val[1], sensitivity, strength_thresh)
}
};
// Store score
vst1q_f32(output + 0, mc.val[0]);
vst1q_f32(output + 4, mc.val[1]);
}
inline void harris_score5x5_S32_S32_FLOAT(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int32_t input_stride,
float in_norm_factor, float in_sensitivity, float in_strength_thresh)
{
auto gx_ptr_0 = static_cast<const int32_t *__restrict>(input1_ptr) - 2 - 2 * input_stride;
auto gy_ptr_0 = static_cast<const int32_t *__restrict>(input2_ptr) - 2 - 2 * input_stride;
const int32_t *gx_ptr_1 = gx_ptr_0 + 4;
const int32_t *gy_ptr_1 = gy_ptr_0 + 4;
const int32_t *gx_ptr_2 = gx_ptr_0 + 8;
const int32_t *gy_ptr_2 = gy_ptr_0 + 8;
const auto output = static_cast<float *__restrict>(output_ptr);
// Gx^2, Gy^2 and Gx*Gy
float32x4x2_t gx2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gy2 =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4x2_t gxgy =
{
{
vdupq_n_f32(0.0f),
vdupq_n_f32(0.0f)
}
};
float32x4_t sensitivity = vdupq_n_f32(in_sensitivity);
float32x4_t norm_factor = vdupq_n_f32(in_norm_factor);
float32x4_t strength_thresh = vdupq_n_f32(in_strength_thresh);
for(int i = 0; i < 5; ++i)
{
const float32x4_t low_gx_0 = vcvtq_f32_s32(vld1q_s32(gx_ptr_0));
const float32x4_t low_gy_0 = vcvtq_f32_s32(vld1q_s32(gy_ptr_0));
const float32x4_t high_gx_0 = vcvtq_f32_s32(vld1q_s32(gx_ptr_1));
const float32x4_t high_gy_0 = vcvtq_f32_s32(vld1q_s32(gy_ptr_1));
harris_score1x5_FLOAT_FLOAT_FLOAT(low_gx_0, low_gy_0, high_gx_0, high_gy_0, gx2.val[0], gy2.val[0], gxgy.val[0], norm_factor);
const float32x4_t low_gx_1 = vcvtq_f32_s32(vld1q_s32(gx_ptr_1));
const float32x4_t low_gy_1 = vcvtq_f32_s32(vld1q_s32(gy_ptr_1));
const float32x4_t high_gx_1 = vcvtq_f32_s32(vld1q_s32(gx_ptr_2));
const float32x4_t high_gy_1 = vcvtq_f32_s32(vld1q_s32(gy_ptr_2));
harris_score1x5_FLOAT_FLOAT_FLOAT(low_gx_1, low_gy_1, high_gx_1, high_gy_1, gx2.val[1], gy2.val[1], gxgy.val[1], norm_factor);
// Update gx and gy pointer
gx_ptr_0 += input_stride;
gy_ptr_0 += input_stride;
gx_ptr_1 += input_stride;
gy_ptr_1 += input_stride;
gx_ptr_2 += input_stride;
gy_ptr_2 += input_stride;
}
// Calculate harris score
const float32x4x2_t mc =
{
{
harris_score(gx2.val[0], gy2.val[0], gxgy.val[0], sensitivity, strength_thresh),
harris_score(gx2.val[1], gy2.val[1], gxgy.val[1], sensitivity, strength_thresh)
}
};
// Store score
vst1q_f32(output + 0, mc.val[0]);
vst1q_f32(output + 4, mc.val[1]);
}
inline void harris_score7x7_S16_S16_FLOAT(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int32_t input_stride,
float in_norm_factor, float in_sensitivity, float in_strength_thresh)
{
auto gx_ptr_0 = static_cast<const int16_t *__restrict>(input1_ptr) - 3 - 3 * input_stride;
auto gy_ptr_0 = static_cast<const int16_t *__restrict>(input2_ptr) - 3 - 3 * input_stride;
const int16_t *gx_ptr_1 = gx_ptr_0 + 8;
const int16_t *gy_ptr_1 = gy_ptr_0 + 8;
const auto output = static_cast<float *__restrict>(output_ptr);
// Gx^2, Gy^2 and Gx*Gy
float32x4_t gx2 = vdupq_n_f32(0.0f);
float32x4_t gy2 = vdupq_n_f32(0.0f);
float32x4_t gxgy = vdupq_n_f32(0.0f);
float32x4_t sensitivity = vdupq_n_f32(in_sensitivity);
float32x4_t norm_factor = vdupq_n_f32(in_norm_factor);
float32x4_t strength_thresh = vdupq_n_f32(in_strength_thresh);
for(int i = 0; i < 7; ++i)
{
const int16x8_t tmp0_gx = vld1q_s16(gx_ptr_0);
const int16x8_t tmp0_gy = vld1q_s16(gy_ptr_0);
const int16x4_t tmp1_gx = vld1_s16(gx_ptr_1);
const int16x4_t tmp1_gy = vld1_s16(gy_ptr_1);
float32x4_t low_gx = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp0_gx)));
float32x4_t low_gy = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp0_gy)));
float32x4_t high_gx = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp0_gx)));
float32x4_t high_gy = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp0_gy)));
float32x4_t high_gx1 = vcvtq_f32_s32(vmovl_s16(tmp1_gx));
float32x4_t high_gy1 = vcvtq_f32_s32(vmovl_s16(tmp1_gy));
harris_score1x7_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, high_gx1, high_gy1, gx2, gy2, gxgy, norm_factor);
// Update gx and gy pointer
gx_ptr_0 += input_stride;
gy_ptr_0 += input_stride;
gx_ptr_1 += input_stride;
gy_ptr_1 += input_stride;
}
// Calculate harris score
const float32x4_t mc = harris_score(gx2, gy2, gxgy, sensitivity, strength_thresh);
// Store score
vst1q_f32(output, mc);
}
inline void harris_score7x7_S32_S32_FLOAT(const void *__restrict input1_ptr, const void *__restrict input2_ptr, void *__restrict output_ptr, int32_t input_stride,
float in_norm_factor, float in_sensitivity, float in_strength_thresh)
{
auto gx_ptr_0 = static_cast<const int32_t *__restrict>(input1_ptr) - 3 - 3 * input_stride;
auto gy_ptr_0 = static_cast<const int32_t *__restrict>(input2_ptr) - 3 - 3 * input_stride;
const int32_t *gx_ptr_1 = gx_ptr_0 + 4;
const int32_t *gy_ptr_1 = gy_ptr_0 + 4;
const int32_t *gx_ptr_2 = gx_ptr_1 + 4;
const int32_t *gy_ptr_2 = gy_ptr_1 + 4;
const auto output = static_cast<float *__restrict>(output_ptr);
// Gx^2, Gy^2 and Gx*Gy
float32x4_t gx2 = vdupq_n_f32(0.0f);
float32x4_t gy2 = vdupq_n_f32(0.0f);
float32x4_t gxgy = vdupq_n_f32(0.0f);
float32x4_t sensitivity = vdupq_n_f32(in_sensitivity);
float32x4_t norm_factor = vdupq_n_f32(in_norm_factor);
float32x4_t strength_thresh = vdupq_n_f32(in_strength_thresh);
for(int i = 0; i < 7; ++i)
{
const float32x4_t low_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_0));
const float32x4_t low_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_0));
const float32x4_t high_gx = vcvtq_f32_s32(vld1q_s32(gx_ptr_1));
const float32x4_t high_gy = vcvtq_f32_s32(vld1q_s32(gy_ptr_1));
const float32x4_t high_gx1 = vcvtq_f32_s32(vld1q_s32(gx_ptr_2));
const float32x4_t high_gy1 = vcvtq_f32_s32(vld1q_s32(gy_ptr_2));
harris_score1x7_FLOAT_FLOAT_FLOAT(low_gx, low_gy, high_gx, high_gy, high_gx1, high_gy1, gx2, gy2, gxgy, norm_factor);
// Update gx and gy pointer
gx_ptr_0 += input_stride;
gy_ptr_0 += input_stride;
gx_ptr_1 += input_stride;
gy_ptr_1 += input_stride;
gx_ptr_2 += input_stride;
gy_ptr_2 += input_stride;
}
// Calculate harris score
const float32x4_t mc = harris_score(gx2, gy2, gxgy, sensitivity, strength_thresh);
// Store score
vst1q_f32(output, mc);
}
} // namespace
INEHarrisScoreKernel::INEHarrisScoreKernel()
: _input1(nullptr), _input2(nullptr), _output(nullptr), _sensitivity(0.0f), _strength_thresh(0.0f), _norm_factor(0.0f), _border_size()
{
}
template <int32_t block_size>
NEHarrisScoreKernel<block_size>::NEHarrisScoreKernel()
: INEHarrisScoreKernel(), _func(nullptr)
{
}
template <int32_t block_size>
void NEHarrisScoreKernel<block_size>::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
Iterator input1(_input1, window);
Iterator input2(_input2, window);
Iterator output(_output, window);
const size_t input_stride = _input1->info()->strides_in_bytes()[1] / element_size_from_data_type(_input1->info()->data_type());
execute_window_loop(window, [&](const Coordinates & id)
{
(*_func)(input1.ptr(), input2.ptr(), output.ptr(), input_stride, _norm_factor, _sensitivity, _strength_thresh);
},
input1, input2, output);
}
template <int32_t block_size>
BorderSize NEHarrisScoreKernel<block_size>::border_size() const
{
return _border_size;
}
template <int32_t block_size>
void NEHarrisScoreKernel<block_size>::configure(const IImage *input1, const IImage *input2, IImage *output, float norm_factor, float strength_thresh, float sensitivity,
bool border_undefined)
{
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input1);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(input2);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(output);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input1, 1, DataType::S16, DataType::S32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input2, 1, DataType::S16, DataType::S32);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input1, input2);
ARM_COMPUTE_ERROR_ON(0.0f == norm_factor);
_input1 = input1;
_input2 = input2;
_output = output;
_sensitivity = sensitivity;
_strength_thresh = strength_thresh;
_norm_factor = norm_factor;
_border_size = BorderSize(block_size / 2);
if(input1->info()->data_type() == DataType::S16)
{
switch(block_size)
{
case 3:
_func = &harris_score3x3_S16_S16_FLOAT;
break;
case 5:
_func = &harris_score5x5_S16_S16_FLOAT;
break;
case 7:
_func = &harris_score7x7_S16_S16_FLOAT;
break;
default:
ARM_COMPUTE_ERROR("Invalid block size");
break;
}
}
else
{
switch(block_size)
{
case 3:
_func = &harris_score3x3_S32_S32_FLOAT;
break;
case 5:
_func = &harris_score5x5_S32_S32_FLOAT;
break;
case 7:
_func = &harris_score7x7_S32_S32_FLOAT;
break;
default:
ARM_COMPUTE_ERROR("Invalid block size");
break;
}
}
ARM_COMPUTE_ERROR_ON(nullptr == _func);
constexpr unsigned int num_elems_processed_per_iteration = block_size != 7 ? 8 : 4;
constexpr unsigned int num_elems_read_per_iteration = block_size != 7 ? 16 : 12;
constexpr unsigned int num_elems_written_per_iteration = block_size != 7 ? 8 : 4;
constexpr unsigned int num_rows_read_per_iteration = block_size;
// Configure kernel window
Window win = calculate_max_window(*input1->info(), Steps(num_elems_processed_per_iteration), border_undefined, border_size());
AccessWindowHorizontal output_access(output->info(), 0, num_elems_written_per_iteration);
update_window_and_padding(win,
AccessWindowRectangle(input1->info(), -_border_size.left, -_border_size.top, num_elems_read_per_iteration, num_rows_read_per_iteration),
AccessWindowRectangle(input2->info(), -_border_size.left, -_border_size.top, num_elems_read_per_iteration, num_rows_read_per_iteration),
output_access);
ValidRegion valid_region = intersect_valid_regions(input1->info()->valid_region(),
input2->info()->valid_region());
output_access.set_valid_region(win, valid_region, border_undefined, border_size());
INEKernel::configure(win);
}