blob: 3147a698adff8220414e1c67ab0d7193784fbdec [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEChannelCombineKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/IMultiImage.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/MultiImageInfo.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/Window.h"
#include <arm_neon.h>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
NEChannelCombineKernel::NEChannelCombineKernel()
: _func(nullptr), _planes{ { nullptr } }, _output(nullptr), _output_multi(nullptr), _x_subsampling{ { 1, 1, 1 } }, _y_subsampling{ { 1, 1, 1 } }, _num_elems_processed_per_iteration(8),
_is_parallelizable(true)
{
}
void NEChannelCombineKernel::configure(const ITensor *plane0, const ITensor *plane1, const ITensor *plane2, const ITensor *plane3, ITensor *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
ARM_COMPUTE_ERROR_ON(plane0 == output);
ARM_COMPUTE_ERROR_ON(plane1 == output);
ARM_COMPUTE_ERROR_ON(plane2 == output);
set_format_if_unknown(*plane0->info(), Format::U8);
set_format_if_unknown(*plane1->info(), Format::U8);
set_format_if_unknown(*plane2->info(), Format::U8);
if(plane3 != nullptr)
{
set_format_if_unknown(*plane3->info(), Format::U8);
}
set_shape_if_empty(*output->info(), plane0->info()->tensor_shape());
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::RGB888, Format::RGBA8888, Format::UYVY422, Format::YUYV422);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(plane0, plane1, plane2);
if(plane3 != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(plane0, plane3);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(plane0, plane3);
}
const Format &output_format = output->info()->format();
if(output_format == Format::RGBA8888)
{
ARM_COMPUTE_ERROR_ON(plane3 == output);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane3, 1, DataType::U8);
}
_planes[0] = plane0;
_planes[1] = plane1;
_planes[2] = plane2;
_planes[3] = plane3;
_output = output;
_output_multi = nullptr;
_num_elems_processed_per_iteration = 8;
_is_parallelizable = true;
switch(output_format)
{
case Format::RGB888:
_func = &NEChannelCombineKernel::combine_3C;
break;
case Format::RGBA8888:
_func = &NEChannelCombineKernel::combine_4C;
break;
case Format::UYVY422:
_x_subsampling[1] = 2;
_x_subsampling[2] = 2;
_num_elems_processed_per_iteration = 16;
_func = &NEChannelCombineKernel::combine_YUV_1p<true>;
break;
case Format::YUYV422:
_x_subsampling[1] = 2;
_x_subsampling[2] = 2;
_num_elems_processed_per_iteration = 16;
_func = &NEChannelCombineKernel::combine_YUV_1p<false>;
break;
default:
ARM_COMPUTE_ERROR("Not supported format.");
break;
}
TensorShape subsampled_shape_plane1{ plane0->info()->tensor_shape() };
subsampled_shape_plane1.set(0, subsampled_shape_plane1[0] / _x_subsampling[1]);
TensorShape subsampled_shape_plane2{ plane0->info()->tensor_shape() };
subsampled_shape_plane2.set(0, subsampled_shape_plane2[0] / _x_subsampling[2]);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(plane1->info()->tensor_shape(), subsampled_shape_plane1);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(plane2->info()->tensor_shape(), subsampled_shape_plane2);
Window win = calculate_max_window(*plane0->info(), Steps(_num_elems_processed_per_iteration));
AccessWindowHorizontal output_access(output->info(), 0, _num_elems_processed_per_iteration);
AccessWindowHorizontal plane0_access(plane0->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[0]);
AccessWindowHorizontal plane1_access(plane1->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[1]);
AccessWindowHorizontal plane2_access(plane2->info(), 0, _num_elems_processed_per_iteration / _x_subsampling[1], 1.f / _x_subsampling[2]);
AccessWindowHorizontal plane3_access(plane3 == nullptr ? nullptr : plane3->info(), 0, _num_elems_processed_per_iteration);
update_window_and_padding(
win,
plane0_access,
plane1_access,
plane2_access,
plane3_access,
output_access);
ValidRegion valid_region = intersect_valid_regions(plane0->info()->valid_region(),
plane1->info()->valid_region(),
plane2->info()->valid_region());
if(plane3 != nullptr)
{
valid_region = intersect_valid_regions(plane3->info()->valid_region(), valid_region);
}
output_access.set_valid_region(win, ValidRegion(valid_region.anchor, output->info()->tensor_shape()));
INEKernel::configure(win);
}
void NEChannelCombineKernel::configure(const IImage *plane0, const IImage *plane1, const IImage *plane2, IMultiImage *output)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(plane0, plane1, plane2, output);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane0);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane1);
ARM_COMPUTE_ERROR_ON_TENSOR_NOT_2D(plane2);
set_format_if_unknown(*plane0->info(), Format::U8);
set_format_if_unknown(*plane1->info(), Format::U8);
set_format_if_unknown(*plane2->info(), Format::U8);
set_shape_if_empty(*output->plane(0)->info(), plane0->info()->tensor_shape());
switch(output->info()->format())
{
case Format::NV12:
case Format::NV21:
case Format::IYUV:
{
TensorShape subsampled_shape = plane0->info()->tensor_shape();
subsampled_shape.set(0, subsampled_shape[0] / 2);
subsampled_shape.set(1, subsampled_shape[1] / 2);
set_shape_if_empty(*output->plane(1)->info(), subsampled_shape);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->plane(1)->info()->tensor_shape(), subsampled_shape);
if(output->info()->format() == Format::IYUV)
{
set_shape_if_empty(*output->plane(2)->info(), subsampled_shape);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->plane(2)->info()->tensor_shape(), subsampled_shape);
}
break;
}
case Format::YUV444:
set_shape_if_empty(*output->plane(1)->info(), plane0->info()->tensor_shape());
set_shape_if_empty(*output->plane(2)->info(), plane0->info()->tensor_shape());
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(plane1, plane2, output->plane(1), output->plane(2));
break;
default:
ARM_COMPUTE_ERROR("Unsupported format");
}
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(plane0, output->plane(0));
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane0, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane1, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(plane2, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(output, Format::NV12, Format::NV21, Format::IYUV, Format::YUV444);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(plane0, plane1, plane2);
_planes[0] = plane0;
_planes[1] = plane1;
_planes[2] = plane2;
_planes[3] = nullptr;
_output = nullptr;
_output_multi = output;
bool has_two_planes = false;
unsigned int num_elems_written_plane1 = 8;
_num_elems_processed_per_iteration = 8;
_is_parallelizable = true;
const Format &output_format = output->info()->format();
switch(output_format)
{
case Format::NV12:
case Format::NV21:
_x_subsampling = { { 1, 2, 2 } };
_y_subsampling = { { 1, 2, 2 } };
_func = &NEChannelCombineKernel::combine_YUV_2p;
has_two_planes = true;
num_elems_written_plane1 = 16;
break;
case Format::IYUV:
_is_parallelizable = false;
_x_subsampling = { { 1, 2, 2 } };
_y_subsampling = { { 1, 2, 2 } };
_func = &NEChannelCombineKernel::combine_YUV_3p;
break;
case Format::YUV444:
_is_parallelizable = false;
_x_subsampling = { { 1, 1, 1 } };
_y_subsampling = { { 1, 1, 1 } };
_func = &NEChannelCombineKernel::combine_YUV_3p;
break;
default:
ARM_COMPUTE_ERROR("Not supported format.");
break;
}
const unsigned int y_step = *std::max_element(_y_subsampling.begin(), _y_subsampling.end());
Window win = calculate_max_window(*plane0->info(), Steps(_num_elems_processed_per_iteration, y_step));
AccessWindowRectangle output_plane0_access(output->plane(0)->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f, 1.f / _y_subsampling[0]);
AccessWindowRectangle output_plane1_access(output->plane(1)->info(), 0, 0, num_elems_written_plane1, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]);
AccessWindowRectangle output_plane2_access(has_two_planes ? nullptr : output->plane(2)->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]);
update_window_and_padding(win,
AccessWindowHorizontal(plane0->info(), 0, _num_elems_processed_per_iteration),
AccessWindowRectangle(plane1->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[1], 1.f / _y_subsampling[1]),
AccessWindowRectangle(plane2->info(), 0, 0, _num_elems_processed_per_iteration, 1, 1.f / _x_subsampling[2], 1.f / _y_subsampling[2]),
output_plane0_access,
output_plane1_access,
output_plane2_access);
ValidRegion plane0_valid_region = plane0->info()->valid_region();
ValidRegion output_plane1_region = has_two_planes ? intersect_valid_regions(plane1->info()->valid_region(), plane2->info()->valid_region()) : plane2->info()->valid_region();
output_plane0_access.set_valid_region(win, ValidRegion(plane0_valid_region.anchor, output->plane(0)->info()->tensor_shape()));
output_plane1_access.set_valid_region(win, ValidRegion(output_plane1_region.anchor, output->plane(1)->info()->tensor_shape()));
output_plane2_access.set_valid_region(win, ValidRegion(plane2->info()->valid_region().anchor, output->plane(2)->info()->tensor_shape()));
INEKernel::configure(win);
}
bool NEChannelCombineKernel::is_parallelisable() const
{
return _is_parallelizable;
}
void NEChannelCombineKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INEKernel::window(), window);
ARM_COMPUTE_ERROR_ON(_func == nullptr);
(this->*_func)(window);
}
void NEChannelCombineKernel::combine_3C(const Window &win)
{
Iterator p0(_planes[0], win);
Iterator p1(_planes[1], win);
Iterator p2(_planes[2], win);
Iterator out(_output, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const auto p0_ptr = static_cast<uint8_t *>(p0.ptr());
const auto p1_ptr = static_cast<uint8_t *>(p1.ptr());
const auto p2_ptr = static_cast<uint8_t *>(p2.ptr());
const auto out_ptr = static_cast<uint8_t *>(out.ptr());
const uint8x8x3_t pixels =
{
{
vld1_u8(p0_ptr),
vld1_u8(p1_ptr),
vld1_u8(p2_ptr)
}
};
vst3_u8(out_ptr, pixels);
},
p0, p1, p2, out);
}
void NEChannelCombineKernel::combine_4C(const Window &win)
{
Iterator p0(_planes[0], win);
Iterator p1(_planes[1], win);
Iterator p2(_planes[2], win);
Iterator p3(_planes[3], win);
Iterator out(_output, win);
execute_window_loop(win, [&](const Coordinates & id)
{
const auto p0_ptr = static_cast<uint8_t *>(p0.ptr());
const auto p1_ptr = static_cast<uint8_t *>(p1.ptr());
const auto p2_ptr = static_cast<uint8_t *>(p2.ptr());
const auto p3_ptr = static_cast<uint8_t *>(p3.ptr());
const auto out_ptr = static_cast<uint8_t *>(out.ptr());
const uint8x8x4_t pixels =
{
{
vld1_u8(p0_ptr),
vld1_u8(p1_ptr),
vld1_u8(p2_ptr),
vld1_u8(p3_ptr)
}
};
vst4_u8(out_ptr, pixels);
},
p0, p1, p2, p3, out);
}
template <bool is_uyvy>
void NEChannelCombineKernel::combine_YUV_1p(const Window &win)
{
// Create sub-sampled uv window and init uv planes
Window win_uv(win);
win_uv.set_dimension_step(0, win.x().step() / _x_subsampling[1]);
win_uv.validate();
Iterator p0(_planes[0], win);
Iterator p1(_planes[1], win_uv);
Iterator p2(_planes[2], win_uv);
Iterator out(_output, win);
constexpr auto shift = is_uyvy ? 1 : 0;
execute_window_loop(win, [&](const Coordinates & id)
{
const auto p0_ptr = static_cast<uint8_t *>(p0.ptr());
const auto p1_ptr = static_cast<uint8_t *>(p1.ptr());
const auto p2_ptr = static_cast<uint8_t *>(p2.ptr());
const auto out_ptr = static_cast<uint8_t *>(out.ptr());
const uint8x8x2_t pixels_y = vld2_u8(p0_ptr);
const uint8x8x2_t pixels_uv =
{
{
vld1_u8(p1_ptr),
vld1_u8(p2_ptr)
}
};
uint8x8x4_t pixels{ {} };
pixels.val[0 + shift] = pixels_y.val[0];
pixels.val[1 - shift] = pixels_uv.val[0];
pixels.val[2 + shift] = pixels_y.val[1];
pixels.val[3 - shift] = pixels_uv.val[1];
vst4_u8(out_ptr, pixels);
},
p0, p1, p2, out);
}
void NEChannelCombineKernel::combine_YUV_2p(const Window &win)
{
ARM_COMPUTE_ERROR_ON(win.x().start() % _x_subsampling[1]);
ARM_COMPUTE_ERROR_ON(win.y().start() % _y_subsampling[1]);
// Copy first plane
copy_plane(win, 0);
// Update UV window
Window uv_win(win);
uv_win.set(Window::DimX, Window::Dimension(uv_win.x().start() / _x_subsampling[1], uv_win.x().end() / _x_subsampling[1], _num_elems_processed_per_iteration));
uv_win.set(Window::DimY, Window::Dimension(uv_win.y().start() / _y_subsampling[1], uv_win.y().end() / _y_subsampling[1], 1));
uv_win.validate();
// Update output win
Window out_win(win);
out_win.set(Window::DimX, Window::Dimension(out_win.x().start(), out_win.x().end(), out_win.x().step() * 2));
out_win.set(Window::DimY, Window::Dimension(out_win.y().start() / _y_subsampling[1], out_win.y().end() / _y_subsampling[1], 1));
out_win.validate();
// Construct second plane
const int shift = (Format::NV12 == _output_multi->info()->format()) ? 0 : 1;
Iterator p1(_planes[1 + shift], uv_win);
Iterator p2(_planes[2 - shift], uv_win);
Iterator out(_output_multi->plane(1), out_win);
execute_window_loop(out_win, [&](const Coordinates & id)
{
const uint8x8x2_t pixels =
{
{
vld1_u8(p1.ptr()),
vld1_u8(p2.ptr())
}
};
vst2_u8(out.ptr(), pixels);
},
p1, p2, out);
}
void NEChannelCombineKernel::combine_YUV_3p(const Window &win)
{
copy_plane(win, 0);
copy_plane(win, 1);
copy_plane(win, 2);
}
void NEChannelCombineKernel::copy_plane(const Window &win, uint32_t plane_id)
{
ARM_COMPUTE_ERROR_ON(win.x().start() % _x_subsampling[plane_id]);
ARM_COMPUTE_ERROR_ON(win.y().start() % _y_subsampling[plane_id]);
// Update window
Window tmp_win(win);
tmp_win.set(Window::DimX, Window::Dimension(tmp_win.x().start() / _x_subsampling[plane_id], tmp_win.x().end() / _x_subsampling[plane_id], _num_elems_processed_per_iteration));
tmp_win.set(Window::DimY, Window::Dimension(tmp_win.y().start() / _y_subsampling[plane_id], tmp_win.y().end() / _y_subsampling[plane_id], 1));
tmp_win.validate();
Iterator in(_planes[plane_id], tmp_win);
Iterator out(_output_multi->plane(plane_id), tmp_win);
execute_window_loop(tmp_win, [&](const Coordinates & id)
{
const auto in_ptr = static_cast<uint8_t *>(in.ptr());
const auto out_ptr = static_cast<uint8_t *>(out.ptr());
vst1_u8(out_ptr, vld1_u8(in_ptr));
},
in, out);
}