blob: e5b933a781e41ce0738a8224958c1ebebeac59f6 [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/core/NEON/kernels/NEAccumulateKernel.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/IAccessWindow.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include <arm_neon.h>
using namespace arm_compute;
namespace arm_compute
{
class Coordinates;
} // namespace arm_compute
/* Max S16 value used for saturation purposes. */
const static uint16x8_t max_int_u16 = vdupq_n_u16(static_cast<uint16_t>(INT16_MAX));
#ifdef ARM_COMPUTE_ENABLE_FP16
namespace fp16
{
inline float16x8x2_t convert_u8x16_to_f16x8x2(uint8x16_t input)
{
const float16x8x2_t out =
{
{
vcvtq_f16_u16(vmovl_u8(vget_low_u8(input))),
vcvtq_f16_u16(vmovl_u8(vget_high_u8(input)))
}
};
return out;
}
inline uint8x16_t convert_f16x8x2_to_u8x16(const float16x8x2_t &input)
{
return vcombine_u8(vmovn_u16(vcvtq_u16_f16(input.val[0])),
vmovn_u16(vcvtq_u16_f16(input.val[1])));
}
inline float16x8x2_t vector_accumulate_weighted(const float16x8x2_t &vec0, const float16x8x2_t &vec1, float16x8_t scale_val, float16x8_t scale_val2)
{
const float16x8x2_t res =
{
{
vfmaq_f16(vmulq_f16(vec1.val[0], scale_val), vec0.val[0], scale_val2),
vfmaq_f16(vmulq_f16(vec1.val[1], scale_val), vec0.val[1], scale_val2)
}
};
return res;
}
void acc_we_v16_u8(const void *__restrict input, void *__restrict accum, float16x8_t scale_val, float16x8_t scale_val2)
{
ARM_COMPUTE_ERROR_ON(nullptr == input);
ARM_COMPUTE_ERROR_ON(nullptr == accum);
const auto input_ptr = static_cast<const uint8_t *__restrict>(input);
const auto accum_ptr = static_cast<uint8_t *__restrict>(accum);
const uint8x16x4_t input_buffer = vld4q_u8(input_ptr);
uint8x16x4_t accum_buffer = vld4q_u8(accum_ptr);
const float16x8x2_t f16_input_0 = convert_u8x16_to_f16x8x2(input_buffer.val[0]);
const float16x8x2_t f16_input_1 = convert_u8x16_to_f16x8x2(input_buffer.val[1]);
const float16x8x2_t f16_input_2 = convert_u8x16_to_f16x8x2(input_buffer.val[2]);
const float16x8x2_t f16_input_3 = convert_u8x16_to_f16x8x2(input_buffer.val[3]);
float16x8x2_t f16_accum_0 = convert_u8x16_to_f16x8x2(accum_buffer.val[0]);
float16x8x2_t f16_accum_1 = convert_u8x16_to_f16x8x2(accum_buffer.val[1]);
float16x8x2_t f16_accum_2 = convert_u8x16_to_f16x8x2(accum_buffer.val[2]);
float16x8x2_t f16_accum_3 = convert_u8x16_to_f16x8x2(accum_buffer.val[3]);
f16_accum_0 = vector_accumulate_weighted(f16_input_0, f16_accum_0, scale_val, scale_val2);
f16_accum_1 = vector_accumulate_weighted(f16_input_1, f16_accum_1, scale_val, scale_val2);
f16_accum_2 = vector_accumulate_weighted(f16_input_2, f16_accum_2, scale_val, scale_val2);
f16_accum_3 = vector_accumulate_weighted(f16_input_3, f16_accum_3, scale_val, scale_val2);
accum_buffer = { {
convert_f16x8x2_to_u8x16(f16_accum_0),
convert_f16x8x2_to_u8x16(f16_accum_1),
convert_f16x8x2_to_u8x16(f16_accum_2),
convert_f16x8x2_to_u8x16(f16_accum_3)
}
};
vst4q_u8(accum_ptr, accum_buffer);
}
} // namespace fp16
void NEAccumulateWeightedFP16Kernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window);
Iterator input(_input, window);
Iterator accum(_output, window);
const float16x8_t scale_val = vdupq_n_f16(1.f - _alpha);
const float16x8_t scale_val2 = vdupq_n_f16(_alpha);
execute_window_loop(window, [&](const Coordinates & id)
{
fp16::acc_we_v16_u8(input.ptr(), accum.ptr(), scale_val, scale_val2);
},
input, accum);
}
#endif
namespace
{
inline void acc_v16_u8(const void *__restrict input, void *__restrict accum)
{
ARM_COMPUTE_ERROR_ON(nullptr == input);
ARM_COMPUTE_ERROR_ON(nullptr == accum);
const auto in = static_cast<const uint8_t *__restrict>(input);
const auto out = static_cast<int16_t *__restrict>(accum);
uint8x16_t ta1 = vld1q_u8(in);
int16x8_t ta2 = vld1q_s16(out);
int16x8_t ta3 = vld1q_s16(out + 8);
ta2 = vqaddq_s16(ta2, vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(ta1))));
ta3 = vqaddq_s16(ta3, vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(ta1))));
vst1q_s16(out, ta2);
vst1q_s16(out + 8, ta3);
}
inline float32x4x4_t convert_u8x16_to_f32x4x4(uint8x16_t input)
{
const uint16x8_t u16_output_low = vmovl_u8(vget_low_u8(input));
const uint16x8_t u16_output_hi = vmovl_u8(vget_high_u8(input));
const float32x4x4_t res =
{
{
vcvtq_f32_u32(vmovl_u16(vget_low_u16(u16_output_low))),
vcvtq_f32_u32(vmovl_u16(vget_high_u16(u16_output_low))),
vcvtq_f32_u32(vmovl_u16(vget_low_u16(u16_output_hi))),
vcvtq_f32_u32(vmovl_u16(vget_high_u16(u16_output_hi)))
}
};
return res;
}
inline uint8x16_t convert_f32x4x4_to_u8x16(const float32x4x4_t &input)
{
return vcombine_u8(vmovn_u16(vcombine_u16(vmovn_u32(vcvtq_u32_f32(input.val[0])),
vmovn_u32(vcvtq_u32_f32(input.val[1])))),
vmovn_u16(vcombine_u16(vmovn_u32(vcvtq_u32_f32(input.val[2])),
vmovn_u32(vcvtq_u32_f32(input.val[3])))));
}
inline float32x4x4_t vector_accumulate_weighted(const float32x4x4_t &vector_input, float32x4x4_t vector_output, float32x4_t scale_val, float32x4_t scale_val2)
{
vector_output.val[0] = vmulq_f32(vector_output.val[0], scale_val);
vector_output.val[1] = vmulq_f32(vector_output.val[1], scale_val);
vector_output.val[2] = vmulq_f32(vector_output.val[2], scale_val);
vector_output.val[3] = vmulq_f32(vector_output.val[3], scale_val);
vector_output.val[0] = vmlaq_f32(vector_output.val[0], vector_input.val[0], scale_val2);
vector_output.val[1] = vmlaq_f32(vector_output.val[1], vector_input.val[1], scale_val2);
vector_output.val[2] = vmlaq_f32(vector_output.val[2], vector_input.val[2], scale_val2);
vector_output.val[3] = vmlaq_f32(vector_output.val[3], vector_input.val[3], scale_val2);
return vector_output;
}
inline void acc_we_v16_u8(const void *__restrict input, void *__restrict accum, const float32x4_t scale_val, const float32x4_t scale_val2)
{
ARM_COMPUTE_ERROR_ON(nullptr == input);
ARM_COMPUTE_ERROR_ON(nullptr == accum);
const auto input_ptr = static_cast<const uint8_t *__restrict>(input);
const auto accum_ptr = static_cast<uint8_t *__restrict>(accum);
const uint8x16_t input_buffer = vld1q_u8(input_ptr);
const uint8x16_t accum_buffer = vld1q_u8(accum_ptr);
const float32x4x4_t f32_input_0 = convert_u8x16_to_f32x4x4(input_buffer);
const float32x4x4_t f32_output_0 = convert_u8x16_to_f32x4x4(accum_buffer);
const float32x4x4_t f32_res_0 = vector_accumulate_weighted(f32_input_0, f32_output_0, scale_val, scale_val2);
vst1q_u8(accum_ptr, convert_f32x4x4_to_u8x16(f32_res_0));
}
void acc_sq_v16_u8(const void *__restrict input, uint32_t shift, void *__restrict accum)
{
ARM_COMPUTE_ERROR_ON(nullptr == input);
ARM_COMPUTE_ERROR_ON(nullptr == accum);
ARM_COMPUTE_ERROR_ON(shift > 15);
const auto input_buffer = static_cast<const uint8_t *__restrict>(input);
const auto accum_buffer = static_cast<int16_t *__restrict>(accum);
const uint8x16_t ta1 = vld1q_u8(input_buffer);
uint16x8_t ta2 = vreinterpretq_u16_s16(vld1q_s16(accum_buffer));
uint16x8_t ta3 = vreinterpretq_u16_s16(vld1q_s16(accum_buffer + 8));
const int16x8_t vector_shift = vdupq_n_s16(-static_cast<int16_t>(shift));
uint16x8_t linput = vmovl_u8(vget_low_u8(ta1));
uint16x8_t hinput = vmovl_u8(vget_high_u8(ta1));
linput = vmulq_u16(linput, linput);
hinput = vmulq_u16(hinput, hinput);
linput = vqshlq_u16(linput, vector_shift);
hinput = vqshlq_u16(hinput, vector_shift);
ta2 = vqaddq_u16(ta2, linput);
ta3 = vqaddq_u16(ta3, hinput);
vst1q_s16(accum_buffer, vreinterpretq_s16_u16(vminq_u16(max_int_u16, ta2)));
vst1q_s16(accum_buffer + 8, vreinterpretq_s16_u16(vminq_u16(max_int_u16, ta3)));
}
} // namespace
void NEAccumulateKernel::configure(const ITensor *input, ITensor *accum)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, accum);
set_shape_if_empty(*accum->info(), input->info()->tensor_shape());
set_format_if_unknown(*accum->info(), Format::S16);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(accum, 1, DataType::S16);
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, accum);
constexpr unsigned int num_elems_processed_per_iteration = 16;
INESimpleKernel::configure(input, accum, num_elems_processed_per_iteration);
}
void NEAccumulateKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window);
Iterator input(_input, window);
Iterator accum(_output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
acc_v16_u8(input.ptr(), accum.ptr());
},
input, accum);
}
NEAccumulateWeightedKernel::NEAccumulateWeightedKernel()
: _alpha(0.0f)
{
}
void NEAccumulateWeightedKernel::configure(const ITensor *input, float alpha, ITensor *accum)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, accum);
set_shape_if_empty(*accum->info(), input->info()->tensor_shape());
set_format_if_unknown(*accum->info(), Format::U8);
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, accum);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(accum, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON(alpha < 0.0 || alpha > 1.0);
_alpha = alpha;
constexpr unsigned int num_elems_processed_per_iteration = 16;
INESimpleKernel::configure(input, accum, num_elems_processed_per_iteration);
}
void NEAccumulateWeightedKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window);
Iterator input(_input, window);
Iterator accum(_output, window);
const float32x4_t scale_val = vdupq_n_f32(1.f - _alpha);
const float32x4_t scale_val2 = vdupq_n_f32(_alpha);
execute_window_loop(window, [&](const Coordinates & id)
{
acc_we_v16_u8(input.ptr(), accum.ptr(), scale_val, scale_val2);
},
input, accum);
}
NEAccumulateSquaredKernel::NEAccumulateSquaredKernel()
: _shift(0)
{
}
void NEAccumulateSquaredKernel::configure(const ITensor *input, uint32_t shift, ITensor *accum)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, accum);
set_shape_if_empty(*accum->info(), input->info()->tensor_shape());
set_format_if_unknown(*accum->info(), Format::S16);
ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(input, accum);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::U8);
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(accum, 1, DataType::S16);
ARM_COMPUTE_ERROR_ON(shift > 15);
_shift = shift;
constexpr unsigned int num_elems_processed_per_iteration = 16;
INESimpleKernel::configure(input, accum, num_elems_processed_per_iteration);
}
void NEAccumulateSquaredKernel::run(const Window &window)
{
ARM_COMPUTE_ERROR_ON_UNCONFIGURED_KERNEL(this);
ARM_COMPUTE_ERROR_ON_INVALID_SUBWINDOW(INESimpleKernel::window(), window);
Iterator input(_input, window);
Iterator accum(_output, window);
execute_window_loop(window, [&](const Coordinates & id)
{
acc_sq_v16_u8(input.ptr(), _shift, accum.ptr());
},
input, accum);
}