blob: 31dd57b767507b148cd8b6f9ef69d38948c1e894 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "helpers.h"
#include "types.h"
#if(defined CELL_WIDTH && defined CELL_HEIGHT && defined NUM_BINS && defined PHASE_SCALE)
/** This OpenCL kernel computes the HOG orientation binning
*
* @attention The following variables must be passed at compile time:
*
* -# -DCELL_WIDTH = Width of the cell
* -# -DCELL_HEIGHT = height of the cell
* -# -DNUM_BINS = Number of bins for each cell
* -# -DPHASE_SCALE = Scale factor used to evaluate the index of the local HOG
*
* @note Each work-item computes a single cell
*
* @param[in] mag_ptr Pointer to the source image which stores the magnitude of the gradient for each pixel. Supported data types: S16
* @param[in] mag_stride_x Stride of the magnitude image in X dimension (in bytes)
* @param[in] mag_step_x mag_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] mag_stride_y Stride of the magnitude image in Y dimension (in bytes)
* @param[in] mag_step_y mag_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] mag_offset_first_element_in_bytes The offset of the first element in the magnitude image
* @param[in] phase_ptr Pointer to the source image which stores the phase of the gradient for each pixel. Supported data types: U8
* @param[in] phase_stride_x Stride of the phase image in X dimension (in bytes)
* @param[in] phase_step_x phase_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] phase_stride_y Stride of the the phase image in Y dimension (in bytes)
* @param[in] phase_step_y phase_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] phase_offset_first_element_in_bytes The offset of the first element in the the phase image
* @param[out] dst_ptr Pointer to the destination image which stores the local HOG for each cell Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
* @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
*/
__kernel void hog_orientation_binning(IMAGE_DECLARATION(mag),
IMAGE_DECLARATION(phase),
IMAGE_DECLARATION(dst))
{
float bins[NUM_BINS] = { 0 };
// Compute address for the magnitude and phase images
Image mag = CONVERT_TO_IMAGE_STRUCT(mag);
Image phase = CONVERT_TO_IMAGE_STRUCT(phase);
__global uchar *mag_row_ptr = mag.ptr;
__global uchar *phase_row_ptr = phase.ptr;
for(int yc = 0; yc < CELL_HEIGHT; ++yc)
{
int xc = 0;
for(; xc <= (CELL_WIDTH - 4); xc += 4)
{
// Load magnitude and phase values
const float4 mag_f32 = convert_float4(vload4(0, (__global short *)mag_row_ptr + xc));
float4 phase_f32 = convert_float4(vload4(0, phase_row_ptr + xc));
// Scale phase: phase * scale + 0.5f
phase_f32 = (float4)0.5f + phase_f32 * (float4)PHASE_SCALE;
// Compute histogram index.
int4 hidx_s32 = convert_int4(phase_f32);
// Compute magnitude weights (w0 and w1)
const float4 hidx_f32 = convert_float4(hidx_s32);
// w1 = phase_f32 - hidx_s32
const float4 w1_f32 = phase_f32 - hidx_f32;
// w0 = 1.0 - w1
const float4 w0_f32 = (float4)1.0f - w1_f32;
// Calculate the weights for splitting vote
const float4 mag_w0_f32 = mag_f32 * w0_f32;
const float4 mag_w1_f32 = mag_f32 * w1_f32;
// Weighted vote between 2 bins
// Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
// Bin 0
bins[hidx_s32.s0] += mag_w0_f32.s0;
bins[hidx_s32.s1] += mag_w0_f32.s1;
bins[hidx_s32.s2] += mag_w0_f32.s2;
bins[hidx_s32.s3] += mag_w0_f32.s3;
hidx_s32 += (int4)1;
// Check if the histogram index is equal to NUM_BINS. If so, replace the index with 0
hidx_s32 = select(hidx_s32, (int4)0, hidx_s32 == (int4)(NUM_BINS));
// Bin1
bins[hidx_s32.s0] += mag_w1_f32.s0;
bins[hidx_s32.s1] += mag_w1_f32.s1;
bins[hidx_s32.s2] += mag_w1_f32.s2;
bins[hidx_s32.s3] += mag_w1_f32.s3;
}
// Left over computation
for(; xc < CELL_WIDTH; xc++)
{
const float mag_value = *((__global short *)mag_row_ptr + xc);
const float phase_value = *(mag_row_ptr + xc) * (float)PHASE_SCALE + 0.5f;
const float w1 = phase_value - floor(phase_value);
// The quantised phase is the histogram index [0, NUM_BINS - 1]
// Check limit of histogram index. If hidx == NUM_BINS, hidx = 0
const uint hidx = (uint)(phase_value) % NUM_BINS;
// Weighted vote between 2 bins
bins[hidx] += mag_value * (1.0f - w1);
bins[(hidx + 1) % NUM_BINS] += mag_value * w1;
}
// Point to the next row of magnitude and phase images
mag_row_ptr += mag_stride_y;
phase_row_ptr += phase_stride_y;
}
// Compute address for the destination image
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
// Store the local HOG in the global memory
int xc = 0;
for(; xc <= (NUM_BINS - 4); xc += 4)
{
float4 values = vload4(0, bins + xc);
vstore4(values, 0, ((__global float *)dst.ptr) + xc);
}
// Left over stores
for(; xc < NUM_BINS; ++xc)
{
((__global float *)dst.ptr)[xc] = bins[xc];
}
}
#endif // (defined CELL_WIDTH && defined CELL_HEIGHT && defined NUM_BINS && defined PHASE_SCALE)
#if(defined NUM_CELLS_PER_BLOCK_HEIGHT && defined NUM_BINS_PER_BLOCK_X && defined NUM_BINS_PER_BLOCK && HOG_NORM_TYPE && defined L2_HYST_THRESHOLD)
#ifndef L2_NORM
#error The value of enum class HOGNormType::L2_NORM has not be passed to the OpenCL kernel
#endif
#ifndef L2HYS_NORM
#error The value of enum class HOGNormType::L2HYS_NORM has not be passed to the OpenCL kernel
#endif
#ifndef L1_NORM
#error The value of enum class HOGNormType::L1_NORM has not be passed to the OpenCL kernel
#endif
/** This OpenCL kernel computes the HOG block normalization
*
* @attention The following variables must be passed at compile time:
*
* -# -DNUM_CELLS_PER_BLOCK_HEIGHT = Number of cells for each block
* -# -DNUM_BINS_PER_BLOCK_X = Number of bins for each block along the X direction
* -# -DNUM_BINS_PER_BLOCK = Number of bins for each block
* -# -DHOG_NORM_TYPE = Normalization type
* -# -DL2_HYST_THRESHOLD = Threshold used for L2HYS_NORM normalization method
* -# -DL2_NORM = Value of the enum class HOGNormType::L2_NORM
* -# -DL2HYS_NORM = Value of the enum class HOGNormType::L2HYS_NORM
* -# -DL1_NORM = Value of the enum class HOGNormType::L1_NORM
*
* @note Each work-item computes a single block
*
* @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
* @param[out] dst_ptr Pointer to the destination image which stores the normlized HOG Supported data types: F32. Number of channels supported: equal to the number of histogram bins per block
* @param[in] dst_stride_x Stride of the destination image in X dimension (in bytes)
* @param[in] dst_step_x dst_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] dst_stride_y Stride of the destination image in Y dimension (in bytes)
* @param[in] dst_step_y dst_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] dst_offset_first_element_in_bytes The offset of the first element in the destination image
*/
__kernel void hog_block_normalization(IMAGE_DECLARATION(src),
IMAGE_DECLARATION(dst))
{
float sum = 0.0f;
float4 sum_f32 = (float4)(0.0f);
// Compute address for the source and destination tensor
Image src = CONVERT_TO_IMAGE_STRUCT(src);
Image dst = CONVERT_TO_IMAGE_STRUCT(dst);
for(size_t yc = 0; yc < NUM_CELLS_PER_BLOCK_HEIGHT; ++yc)
{
const __global float *hist_ptr = (__global float *)(src.ptr + yc * src_stride_y);
int xc = 0;
for(; xc <= (NUM_BINS_PER_BLOCK_X - 16); xc += 16)
{
const float4 val0 = vload4(0, hist_ptr + xc + 0);
const float4 val1 = vload4(0, hist_ptr + xc + 4);
const float4 val2 = vload4(0, hist_ptr + xc + 8);
const float4 val3 = vload4(0, hist_ptr + xc + 12);
#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
// Compute val^2 for L2_NORM or L2HYS_NORM
sum_f32 += val0 * val0;
sum_f32 += val1 * val1;
sum_f32 += val2 * val2;
sum_f32 += val3 * val3;
#else
// Compute |val| for L1_NORM
sum_f32 += fabs(val0);
sum_f32 += fabs(val1);
sum_f32 += fabs(val2);
sum_f32 += fabs(val3);
#endif // (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
// Store linearly the input values un-normalized in the output image. These values will be reused for the normalization.
// This approach will help us to be cache friendly in the next for loop where the normalization will be done because all the values
// will be accessed consecutively
vstore4(val0, 0, ((__global float *)dst.ptr) + xc + 0 + yc * NUM_BINS_PER_BLOCK_X);
vstore4(val1, 0, ((__global float *)dst.ptr) + xc + 4 + yc * NUM_BINS_PER_BLOCK_X);
vstore4(val2, 0, ((__global float *)dst.ptr) + xc + 8 + yc * NUM_BINS_PER_BLOCK_X);
vstore4(val3, 0, ((__global float *)dst.ptr) + xc + 12 + yc * NUM_BINS_PER_BLOCK_X);
}
// Compute left over
for(; xc < NUM_BINS_PER_BLOCK_X; ++xc)
{
const float val = hist_ptr[xc];
#if(HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
sum += val * val;
#else
sum += fabs(val);
#endif // (HOG_NORM_TYPE == L2_NORM) || (HOG_NORM_TYPE == L2HYS_NORM)
((__global float *)dst.ptr)[xc + 0 + yc * NUM_BINS_PER_BLOCK_X] = val;
}
}
sum += dot(sum_f32, (float4)1.0f);
float scale = 1.0f / (sqrt(sum) + NUM_BINS_PER_BLOCK * 0.1f);
#if(HOG_NORM_TYPE == L2HYS_NORM)
// Reset sum
sum_f32 = (float4)0.0f;
sum = 0.0f;
int k = 0;
for(; k <= NUM_BINS_PER_BLOCK - 16; k += 16)
{
float4 val0 = vload4(0, ((__global float *)dst.ptr) + k + 0);
float4 val1 = vload4(0, ((__global float *)dst.ptr) + k + 4);
float4 val2 = vload4(0, ((__global float *)dst.ptr) + k + 8);
float4 val3 = vload4(0, ((__global float *)dst.ptr) + k + 12);
// Scale val
val0 = val0 * (float4)scale;
val1 = val1 * (float4)scale;
val2 = val2 * (float4)scale;
val3 = val3 * (float4)scale;
// Clip val if over _threshold_l2hys
val0 = fmin(val0, (float4)L2_HYST_THRESHOLD);
val1 = fmin(val1, (float4)L2_HYST_THRESHOLD);
val2 = fmin(val2, (float4)L2_HYST_THRESHOLD);
val3 = fmin(val3, (float4)L2_HYST_THRESHOLD);
// Compute val^2
sum_f32 += val0 * val0;
sum_f32 += val1 * val1;
sum_f32 += val2 * val2;
sum_f32 += val3 * val3;
vstore4(val0, 0, ((__global float *)dst.ptr) + k + 0);
vstore4(val1, 0, ((__global float *)dst.ptr) + k + 4);
vstore4(val2, 0, ((__global float *)dst.ptr) + k + 8);
vstore4(val3, 0, ((__global float *)dst.ptr) + k + 12);
}
// Compute left over
for(; k < NUM_BINS_PER_BLOCK; ++k)
{
float val = ((__global float *)dst.ptr)[k] * scale;
// Clip scaled input_value if over L2_HYST_THRESHOLD
val = fmin(val, (float)L2_HYST_THRESHOLD);
sum += val * val;
((__global float *)dst.ptr)[k] = val;
}
sum += dot(sum_f32, (float4)1.0f);
// We use the same constants of OpenCV
scale = 1.0f / (sqrt(sum) + 1e-3f);
#endif // (HOG_NORM_TYPE == L2HYS_NORM)
int i = 0;
for(; i <= (NUM_BINS_PER_BLOCK - 16); i += 16)
{
float4 val0 = vload4(0, ((__global float *)dst.ptr) + i + 0);
float4 val1 = vload4(0, ((__global float *)dst.ptr) + i + 4);
float4 val2 = vload4(0, ((__global float *)dst.ptr) + i + 8);
float4 val3 = vload4(0, ((__global float *)dst.ptr) + i + 12);
// Multiply val by the normalization scale factor
val0 = val0 * (float4)scale;
val1 = val1 * (float4)scale;
val2 = val2 * (float4)scale;
val3 = val3 * (float4)scale;
vstore4(val0, 0, ((__global float *)dst.ptr) + i + 0);
vstore4(val1, 0, ((__global float *)dst.ptr) + i + 4);
vstore4(val2, 0, ((__global float *)dst.ptr) + i + 8);
vstore4(val3, 0, ((__global float *)dst.ptr) + i + 12);
}
for(; i < NUM_BINS_PER_BLOCK; ++i)
{
((__global float *)dst.ptr)[i] *= scale;
}
}
#endif // (defined NUM_CELLS_PER_BLOCK_HEIGHT && defined NUM_BINS_PER_BLOCK_X && defined NUM_BINS_PER_BLOCK && HOG_NORM_TYPE && defined L2_HYST_THRESHOLD)
#if(defined NUM_BLOCKS_PER_DESCRIPTOR_Y && defined NUM_BINS_PER_DESCRIPTOR_X && defined THRESHOLD && defined MAX_NUM_DETECTION_WINDOWS && defined IDX_CLASS && defined BLOCK_STRIDE_WIDTH && defined BLOCK_STRIDE_HEIGHT && defined DETECTION_WINDOW_WIDTH && defined DETECTION_WINDOW_HEIGHT)
/** This OpenCL kernel computes the HOG detector using linear SVM
*
* @attention The following variables must be passed at compile time:
*
* -# -DNUM_BLOCKS_PER_DESCRIPTOR_Y = Number of blocks per descriptor along the Y direction
* -# -DNUM_BINS_PER_DESCRIPTOR_X = Number of bins per descriptor along the X direction
* -# -DTHRESHOLD = Threshold for the distance between features and SVM classifying plane
* -# -DMAX_NUM_DETECTION_WINDOWS = Maximum number of possible detection windows. It is equal to the size of the DetectioWindow array
* -# -DIDX_CLASS = Index of the class to detect
* -# -DBLOCK_STRIDE_WIDTH = Block stride for the X direction
* -# -DBLOCK_STRIDE_HEIGHT = Block stride for the Y direction
* -# -DDETECTION_WINDOW_WIDTH = Width of the detection window
* -# -DDETECTION_WINDOW_HEIGHT = Height of the detection window
*
* @note Each work-item computes a single detection window
*
* @param[in] src_ptr Pointer to the source image which stores the local HOG. Supported data types: F32. Number of channels supported: equal to the number of histogram bins per cell
* @param[in] src_stride_x Stride of the source image in X dimension (in bytes)
* @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes)
* @param[in] src_stride_y Stride of the source image in Y dimension (in bytes)
* @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes)
* @param[in] src_offset_first_element_in_bytes The offset of the first element in the source image
* @param[in] hog_descriptor Pointer to HOG descriptor. Supported data types: F32
* @param[out] dst Pointer to DetectionWindow array
* @param[out] num_detection_windows Number of objects detected
*/
__kernel void hog_detector(IMAGE_DECLARATION(src),
__global float *hog_descriptor,
__global DetectionWindow *dst,
__global uint *num_detection_windows)
{
// Check if the DetectionWindow array is full
if(*num_detection_windows >= MAX_NUM_DETECTION_WINDOWS)
{
return;
}
Image src = CONVERT_TO_IMAGE_STRUCT(src);
const int src_step_y_f32 = src_stride_y / sizeof(float);
// Init score_f32 with 0
float4 score_f32 = (float4)0.0f;
// Init score with 0
float score = 0.0f;
__global float *src_row_ptr = (__global float *)src.ptr;
// Compute Linear SVM
for(int yb = 0; yb < NUM_BLOCKS_PER_DESCRIPTOR_Y; ++yb, src_row_ptr += src_step_y_f32)
{
int xb = 0;
const int offset_y = yb * NUM_BINS_PER_DESCRIPTOR_X;
for(; xb < (int)NUM_BINS_PER_DESCRIPTOR_X - 8; xb += 8)
{
// Load descriptor values
float4 a0_f32 = vload4(0, src_row_ptr + xb + 0);
float4 a1_f32 = vload4(0, src_row_ptr + xb + 4);
float4 b0_f32 = vload4(0, hog_descriptor + xb + 0 + offset_y);
float4 b1_f32 = vload4(0, hog_descriptor + xb + 4 + offset_y);
// Multiply accumulate
score_f32 += a0_f32 * b0_f32;
score_f32 += a1_f32 * b1_f32;
}
for(; xb < NUM_BINS_PER_DESCRIPTOR_X; ++xb)
{
const float a = src_row_ptr[xb];
const float b = hog_descriptor[xb + offset_y];
score += a * b;
}
}
score += dot(score_f32, (float4)1.0f);
// Add the bias. The bias is located at the position (descriptor_size() - 1)
// (descriptor_size - 1) = NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y
score += hog_descriptor[NUM_BINS_PER_DESCRIPTOR_X * NUM_BLOCKS_PER_DESCRIPTOR_Y];
if(score > (float)THRESHOLD)
{
int id = atomic_inc(num_detection_windows);
if(id < MAX_NUM_DETECTION_WINDOWS)
{
dst[id].x = get_global_id(0) * BLOCK_STRIDE_WIDTH;
dst[id].y = get_global_id(1) * BLOCK_STRIDE_HEIGHT;
dst[id].width = DETECTION_WINDOW_WIDTH;
dst[id].height = DETECTION_WINDOW_HEIGHT;
dst[id].idx_class = IDX_CLASS;
dst[id].score = score;
}
}
}
#endif // defined BIAS && defined NUM_BLOCKS_PER_DESCRIPTOR_Y && defined NUM_BINS_PER_DESCRIPTOR_X && ...