blob: 4263a6f00d6e06458023ca48f015e09b25d8fe99 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <cmath>
#include <limits>
namespace
{
template <typename TpIn, typename TpSat>
inline TpSat saturate_convert(TpIn a)
{
if(a > std::numeric_limits<TpSat>::max())
{
a = std::numeric_limits<TpSat>::max();
}
if(a < std::numeric_limits<TpSat>::min())
{
a = std::numeric_limits<TpSat>::min();
}
return static_cast<TpSat>(a);
}
} // namespace
namespace arm_compute
{
inline qint8_t sqshl_qs8(qint8_t a, int shift)
{
qint16_t tmp = static_cast<qint16_t>(a) << shift;
// Saturate the result in case of overflow and cast to qint8_t
return saturate_convert<qint16_t, qint8_t>(tmp);
}
inline qint8_t sabs_qs8(qint8_t a)
{
return a & 0x7F;
}
inline qint8_t sadd_qs8(qint8_t a, qint8_t b)
{
return a + b;
}
inline qint8_t sqadd_qs8(qint8_t a, qint8_t b)
{
// We need to store the temporary result in qint16_t otherwise we cannot evaluate the overflow
qint16_t tmp = (static_cast<qint16_t>(a) + static_cast<qint16_t>(b));
// Saturate the result in case of overflow and cast to qint8_t
return saturate_convert<qint16_t, qint8_t>(tmp);
}
inline qint16_t sqadd_qs16(qint16_t a, qint16_t b)
{
// We need to store the temporary result in qint16_t otherwise we cannot evaluate the overflow
qint32_t tmp = (static_cast<qint32_t>(a) + static_cast<qint32_t>(b));
// Saturate the result in case of overflow and cast to qint16_t
return saturate_convert<qint32_t, qint16_t>(tmp);
}
inline qint8_t ssub_qs8(qint8_t a, qint8_t b)
{
return a - b;
}
inline qint8_t sqsub_qs8(qint8_t a, qint8_t b)
{
// We need to store the temporary result in uint16_t otherwise we cannot evaluate the overflow
qint16_t tmp = static_cast<qint16_t>(a) - static_cast<qint16_t>(b);
// Saturate the result in case of overflow and cast to qint8_t
return saturate_convert<qint16_t, qint8_t>(tmp);
}
inline qint8_t smul_qs8(qint8_t a, qint8_t b, int fixed_point_position)
{
const qint16_t round_up_const = (1 << (fixed_point_position - 1));
qint16_t tmp = static_cast<qint16_t>(a) * static_cast<qint16_t>(b);
// Rounding up
tmp += round_up_const;
return static_cast<qint8_t>(tmp >> fixed_point_position);
}
inline qint8_t sqmul_qs8(qint8_t a, qint8_t b, int fixed_point_position)
{
const qint16_t round_up_const = (1 << (fixed_point_position - 1));
qint16_t tmp = static_cast<qint16_t>(a) * static_cast<qint16_t>(b);
// Rounding up
tmp += round_up_const;
return saturate_convert<qint16_t, qint8_t>(tmp >> fixed_point_position);
}
inline qint16_t sqmul_qs16(qint16_t a, qint16_t b, int fixed_point_position)
{
const qint32_t round_up_const = (1 << (fixed_point_position - 1));
qint32_t tmp = static_cast<qint32_t>(a) * static_cast<qint32_t>(b);
// Rounding up
tmp += round_up_const;
return saturate_convert<qint32_t, qint16_t>(tmp >> fixed_point_position);
}
inline qint16_t sqmull_qs8(qint8_t a, qint8_t b, int fixed_point_position)
{
const qint16_t round_up_const = (1 << (fixed_point_position - 1));
qint16_t tmp = static_cast<qint16_t>(a) * static_cast<qint16_t>(b);
// Rounding up
tmp += round_up_const;
return tmp >> fixed_point_position;
}
inline qint8_t sinvsqrt_qs8(qint8_t a, int fixed_point_position)
{
qint8_t shift = 8 - (fixed_point_position + (__builtin_clz(a) - 24));
qint8_t const_three = (3 << fixed_point_position);
qint8_t temp = shift < 0 ? (a << -shift) : (a >> shift);
qint8_t x2 = temp;
// We need three iterations to find the result
for(int i = 0; i < 3; i++)
{
qint8_t three_minus_dx = ssub_qs8(const_three, smul_qs8(temp, smul_qs8(x2, x2, fixed_point_position), fixed_point_position));
x2 = (smul_qs8(x2, three_minus_dx, fixed_point_position) >> 1);
}
temp = shift < 0 ? (x2 << (-shift >> 1)) : (x2 >> (shift >> 1));
return temp;
}
inline qint8_t sdiv_qs8(qint8_t a, qint8_t b, int fixed_point_position)
{
qint16_t temp = a << fixed_point_position;
return (qint8_t)(temp / b);
}
inline qint8_t sqexp_qs8(qint8_t a, int fixed_point_position)
{
// Constants
qint8_t const_one = (1 << fixed_point_position);
qint8_t ln2 = ((0x58 >> (6 - fixed_point_position)) + 1) >> 1;
qint8_t inv_ln2 = (((0x38 >> (6 - fixed_point_position)) + 1) >> 1) | const_one;
qint8_t A = ((0x7F >> (6 - fixed_point_position)) + 1) >> 1;
qint8_t B = ((0x3F >> (6 - fixed_point_position)) + 1) >> 1;
qint8_t C = ((0x16 >> (6 - fixed_point_position)) + 1) >> 1;
qint8_t D = ((0x05 >> (6 - fixed_point_position)) + 1) >> 1;
// Polynomial expansion
int dec_a = (sqmul_qs8(a, inv_ln2, fixed_point_position) >> fixed_point_position);
qint8_t alpha = sabs_qs8(sqsub_qs8(a, sqmul_qs8(ln2, sqshl_qs8(dec_a, fixed_point_position), fixed_point_position)));
qint8_t sum = sqadd_qs8(sqmul_qs8(alpha, D, fixed_point_position), C);
sum = sqadd_qs8(sqmul_qs8(alpha, sum, fixed_point_position), B);
sum = sqadd_qs8(sqmul_qs8(alpha, sum, fixed_point_position), A);
sum = sqmul_qs8(alpha, sum, fixed_point_position);
sum = sqadd_qs8(sum, const_one);
return (dec_a < 0) ? (sum >> -dec_a) : sqshl_qs8(sum, dec_a);
}
inline qint8_t slog_qs8(qint8_t a, int fixed_point_position)
{
// Constants
qint8_t const_one = (1 << fixed_point_position);
qint8_t ln2 = (0x58 >> (7 - fixed_point_position));
qint8_t A = (0x5C >> (7 - fixed_point_position - 1));
qint8_t B = -(0x56 >> (7 - fixed_point_position));
qint8_t C = (0x29 >> (7 - fixed_point_position));
qint8_t D = -(0x0A >> (7 - fixed_point_position));
if((const_one == a) || (a < 0))
{
return 0;
}
else if(a < const_one)
{
return -slog_qs8(sdiv_qs8(const_one, a, fixed_point_position), fixed_point_position);
}
// Remove even powers of 2
qint8_t shift_val = 31 - __builtin_clz(a >> fixed_point_position);
a >>= shift_val;
a = ssub_qs8(a, const_one);
// Polynomial expansion
auto sum = sqadd_qs8(sqmul_qs8(a, D, fixed_point_position), C);
sum = sqadd_qs8(sqmul_qs8(a, sum, fixed_point_position), B);
sum = sqadd_qs8(sqmul_qs8(a, sum, fixed_point_position), A);
sum = sqmul_qs8(a, sum, fixed_point_position);
return smul_qs8(sadd_qs8(sum, shift_val << fixed_point_position), ln2, fixed_point_position);
}
inline float scvt_f32_qs8(qint8_t a, int fixed_point_position)
{
return static_cast<float>(a) / (1 << fixed_point_position);
}
inline qint8_t scvt_qs8_f32(float a, int fixed_point_position)
{
// round_nearest_integer(a * 2^(fixed_point_position))
return static_cast<qint8_t>(static_cast<float>(a) * (1 << fixed_point_position) + 0.5f);
}
inline float scvt_f32_qs16(qint16_t a, int fixed_point_position)
{
return static_cast<float>(a) / (1 << fixed_point_position);
}
inline qint8_t scvt_qs16_f32(float a, int fixed_point_position)
{
// round_nearest_integer(a * 2^(fixed_point_position))
return static_cast<qint16_t>(static_cast<float>(a) * (1 << fixed_point_position) + 0.5f);
}
inline qint8_t sqmovn_qs16(qint16_t a)
{
// Saturate the result in case of overflow and cast to qint8_t
return saturate_convert<qint16_t, qint8_t>(a);
}
}