blob: f34f4974361f47d7a1b0d66d1ccf4d87717dc6e5 [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"
#include "arm_compute/core/NEON/kernels/arm32/NEGEMMAArch32Kernel.h"
#include "arm_compute/core/NEON/kernels/arm64/NEGEMMAArch64Kernel.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"
namespace arm_compute
{
#include "arm_compute/core/NEON/kernels/assembly/gemm_interleaved.hpp"
#include "arm_compute/core/NEON/kernels/assembly/kernels/a32_sgemm_8x6.hpp"
#include "arm_compute/core/NEON/kernels/assembly/kernels/a64_sgemm_12x8.hpp"
} // namespace arm_compute
#include <cmath>
#include <tuple>
namespace arm_compute
{
NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
{
}
void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose1xW)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, biases);
ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
// Check if bias are present, if yes they will be embedded to the weights matrix
const bool _has_bias = (biases != nullptr);
_transpose1xW = transpose1xW;
if(transpose1xW)
{
// Create tensor to store the reshaped weights
const unsigned int mat_weights_cols = weights->info()->dimension(3);
const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
TensorInfo info_wr(shape_wr, 1, weights->info()->data_type(), weights->info()->fixed_point_position());
_weights_reshaped.allocator()->init(info_wr);
_memory_group.manage(&_weights_reshaped);
_weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
_weights_transposed_kernel.configure(&_weights_reshaped, output);
_weights_reshaped.allocator()->allocate();
}
else
{
_weights_reshape_kernel.configure(weights, biases, output);
}
}
void NEConvolutionLayerReshapeWeights::run()
{
_memory_group.acquire();
NEScheduler::get().schedule(&_weights_reshape_kernel, 3);
if(_transpose1xW)
{
NEScheduler::get().schedule(&_weights_transposed_kernel, Window::DimY);
}
_memory_group.release();
}
NEConvolutionLayer::NEConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _input_im2col_kernel(), _input_interleave_kernel(), _reshape_weights(), _mm_kernel(), _mm_optimised_kernel(nullptr), _output_col2im_kernel(),
_input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(), _gemm_output(), _workspace(), _has_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false)
{
}
void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
{
ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2));
ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
if(biases != nullptr)
{
ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3));
ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
}
const DataType dt = input->info()->data_type();
const int fixed_point_position = input->info()->fixed_point_position();
_has_bias = (biases != nullptr);
_are_weights_reshaped = weights_info.are_reshaped();
// Get parameters from conv_info
unsigned int stride_x = 0;
unsigned int stride_y = 0;
unsigned int pad_x = 0;
unsigned int pad_y = 0;
std::tie(stride_x, stride_y) = conv_info.stride();
std::tie(pad_x, pad_y) = conv_info.pad();
// Get convolved dimensions
unsigned int conv_w = 0;
unsigned int conv_h = 0;
const unsigned int kernel_width = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0);
const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1);
std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
conv_info);
// Check if its a "fully connected" convolution, i.e. the output size is 1x1xnum_kernels
_is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));
#if defined(__arm__)
if(NEScheduler::get().cpu_info().CPU == CPUTarget::ARMV7 && dt == DataType::F32)
{
_mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch32Kernel>();
}
#elif defined(__aarch64__)
if(NEScheduler::get().cpu_info().CPU >= CPUTarget::ARMV8 && dt == DataType::F32)
{
_mm_optimised_kernel = support::cpp14::make_unique<NEGEMMAArch64Kernel>();
}
#endif /* defined(__arm__) || defined(__aarch64__) */
unsigned int mat_weights_cols = weights->info()->dimension(3);
unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
// Reshape weights if needed
if(_mm_optimised_kernel != nullptr)
{
if(_are_weights_reshaped)
{
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->info()->dimension(1);
}
else
{
TensorShape reshaped_weights_shape{ mat_weights_cols, mat_weights_rows };
// Create tensor to store the reshaped weights
_weights_reshaped.allocator()->init(TensorInfo(reshaped_weights_shape, 1, dt, fixed_point_position));
_reshape_weights.configure(weights, biases, &_weights_reshaped, false /* 1xW transpose */);
weights = &_weights_reshaped;
}
}
else
{
if(_are_weights_reshaped)
{
const unsigned int transpose_width = 16 / input->info()->element_size();
mat_weights_cols = weights_info.num_kernels();
mat_weights_rows = weights->info()->dimension(0) / transpose_width + (_has_bias ? 1 : 0);
}
else
{
TensorShape reshaped_weights_shape;
if(_is_fully_connected_convolution)
{
reshaped_weights_shape = TensorShape{ mat_weights_cols, mat_weights_rows };
}
else
{
// Create tensor to store transposed weights
const float transpose_width = 16.0f / input->info()->element_size();
reshaped_weights_shape = TensorShape{ mat_weights_rows *static_cast<unsigned int>(transpose_width),
static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)) };
}
// Create tensor to store the reshaped weights
_weights_reshaped.allocator()->init(TensorInfo(reshaped_weights_shape, 1, dt, fixed_point_position));
_reshape_weights.configure(weights, biases, &_weights_reshaped, !_is_fully_connected_convolution /* 1xW transpose */);
weights = &_weights_reshaped;
}
}
// Create tensor to store im2col reshaped inputs
const unsigned int mat_input_cols = mat_weights_rows;
const unsigned int mat_input_rows = conv_w * conv_h;
TensorShape shape_im2col(input->info()->tensor_shape());
shape_im2col.set(0, mat_input_cols);
shape_im2col.set(1, mat_input_rows);
shape_im2col.set(2, 1);
_input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
_memory_group.manage(&_input_im2col_reshaped);
// Create tensor (interleave) to prepare input tensor for GEMM
if(!_is_fully_connected_convolution && _mm_optimised_kernel == nullptr)
{
TensorShape shape_interleaved(shape_im2col);
shape_interleaved.set(0, shape_interleaved.x() * 4);
shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
_input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
_memory_group.manage(&_input_interleaved_reshaped);
}
// Create GEMM output tensor
TensorShape shape_gemm(_input_im2col_reshaped.info()->tensor_shape());
shape_gemm.set(0, mat_weights_cols);
shape_gemm.set(1, mat_input_rows);
_gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, dt, fixed_point_position));
_memory_group.manage(&_gemm_output);
// Configure kernels
_input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _has_bias);
#if defined(__arm__) || defined(__aarch64__)
if(_mm_optimised_kernel != nullptr)
{
struct CPUInfo ci = NEScheduler::get().cpu_info();
const int M = _gemm_output.info()->tensor_shape().y();
const int N = _gemm_output.info()->tensor_shape().x();
const int K = _input_im2col_reshaped.info()->tensor_shape().x();
#if defined(__arm__)
GemmInterleaved<sgemm_8x6, float, float> gemm(&ci, M, N, K, false, false);
#elif defined(__aarch64__)
GemmInterleaved<sgemm_12x8, float, float> gemm(&ci, M, N, K, false, false);
#endif /* defined(__arm__) || defined(__aarch64__) */
constexpr size_t alignment = 4096;
_workspace.allocator()->init(TensorInfo(TensorShape{ (gemm.get_working_size() + alignment - 1) * NEScheduler::get().num_threads() }, 1, DataType::U8));
_memory_group.manage(&_workspace);
// Configure matrix multiplication kernel
if(_is_fully_connected_convolution)
{
_mm_optimised_kernel->configure(&_input_im2col_reshaped, weights, &_gemm_output, &_workspace, 1.f, 0.f, false, false);
}
else
{
_mm_optimised_kernel->configure(&_input_im2col_reshaped, weights, &_gemm_output, &_workspace);
}
_workspace.allocator()->allocate();
}
else
#endif /* defined(__arm__) || defined(__aarch64__) */
{
if(_is_fully_connected_convolution)
{
_mm_kernel.configure(&_input_im2col_reshaped, weights, &_gemm_output, 1.0f);
}
else
{
_input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
_mm_kernel.configure(&_input_interleaved_reshaped, weights, &_gemm_output, 1.0f);
_input_interleaved_reshaped.allocator()->allocate();
}
}
_input_im2col_reshaped.allocator()->allocate();
_output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
_gemm_output.allocator()->allocate();
ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
// Allocate intermediate tensor
if(!_are_weights_reshaped)
{
_weights_reshaped.allocator()->allocate();
}
}
void NEConvolutionLayer::run()
{
// Run weights reshaping (Runs once for every configure)
if(!_are_weights_reshaped)
{
_are_weights_reshaped = true;
_reshape_weights.run();
}
_memory_group.acquire();
// Run input reshaping
NEScheduler::get().schedule(&_input_im2col_kernel, Window::DimY);
// Runs matrix multiply on reshaped matrices
if(_mm_optimised_kernel != nullptr)
{
NEScheduler::get().schedule(_mm_optimised_kernel.get(), Window::DimY);
}
else
{
if(!_is_fully_connected_convolution)
{
// Run interleave
NEScheduler::get().schedule(&_input_interleave_kernel, Window::DimY);
}
NEScheduler::get().schedule(&_mm_kernel, Window::DimY);
}
// Reshape output matrix
NEScheduler::get().schedule(&_output_col2im_kernel, Window::DimY);
_memory_group.release();
}
} // namespace arm_compute