blob: b47be8dc33f01e6c31ec5ae3c23ce786d595f56e [file] [log] [blame]
/*
* Copyright (c) 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/graph/nodes/ConvolutionLayer.h"
#include "arm_compute/core/Logger.h"
#include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
#include "arm_compute/runtime/CL/functions/CLDirectConvolutionLayer.h"
#include "arm_compute/runtime/IFunction.h"
#include "arm_compute/runtime/NEON/functions/NEConvolutionLayer.h"
#include "arm_compute/runtime/NEON/functions/NEDirectConvolutionLayer.h"
#include "support/ToolchainSupport.h"
#include "utils/GraphTypePrinter.h"
#include "utils/TypePrinter.h"
#include <tuple>
#include <vector>
using namespace arm_compute::graph;
namespace
{
/** Calculates the output shaped of the convolution layer
*
* @param[in] input_shape Input tensor shape
* @param[in] weights_shape Weights shape
* @param[in] conv_info Convolution information (padding, stride, etc.)
*
* @return The expected output tensor shape
*/
TensorShape calculate_convolution_layer_output_shape(const TensorShape &input_shape, const TensorShape &weights_shape, const PadStrideInfo &conv_info)
{
unsigned int output_width = 0;
unsigned int output_height = 0;
// Get output width and height
std::tie(output_width, output_height) = arm_compute::scaled_dimensions(input_shape.x(), input_shape.y(), weights_shape.x(), weights_shape.y(), conv_info);
// Create output shape
TensorShape output_shape = input_shape;
output_shape.set(0, output_width);
output_shape.set(1, output_height);
output_shape.set(2, weights_shape[3]);
return output_shape;
}
// Instantiate GEMM based convolution layer
template <typename ConvolutionType, typename TensorType, TargetHint target_hint>
std::unique_ptr<arm_compute::IFunction> instantiate_function(ITensor *input, ITensor *weights, ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
{
auto conv = arm_compute::support::cpp14::make_unique<ConvolutionType>();
conv->configure(
dynamic_cast<TensorType *>(input),
dynamic_cast<TensorType *>(weights),
dynamic_cast<TensorType *>(biases),
dynamic_cast<TensorType *>(output),
conv_info, weights_info);
return std::move(conv);
}
// Instantiate direct convolution layer
template <typename ConvolutionType, typename TensorType, TargetHint target_hint>
std::unique_ptr<arm_compute::IFunction> instantiate_direct_function(ITensor *input, ITensor *weights, ITensor *biases, ITensor *output, const PadStrideInfo &conv_info)
{
auto conv = arm_compute::support::cpp14::make_unique<ConvolutionType>();
conv->configure(
dynamic_cast<TensorType *>(input),
dynamic_cast<TensorType *>(weights),
dynamic_cast<TensorType *>(biases),
dynamic_cast<TensorType *>(output),
conv_info);
return std::move(conv);
}
template <TargetHint target_hint>
std::unique_ptr<arm_compute::IFunction> instantiate(ITensor *input, ITensor *weights, ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info,
ConvolutionMethodHint conv_method);
template <>
std::unique_ptr<arm_compute::IFunction> instantiate<TargetHint::OPENCL>(ITensor *input, ITensor *weights, ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const WeightsInfo &weights_info,
ConvolutionMethodHint conv_method)
{
if(conv_method == ConvolutionMethodHint::GEMM)
{
return instantiate_function<arm_compute::CLConvolutionLayer, arm_compute::ICLTensor, TargetHint::OPENCL>(input, weights, biases, output, conv_info, weights_info);
}
else
{
return instantiate_direct_function<arm_compute::CLDirectConvolutionLayer, arm_compute::ICLTensor, TargetHint::OPENCL>(input, weights, biases, output, conv_info);
}
}
template <>
std::unique_ptr<arm_compute::IFunction> instantiate<TargetHint::NEON>(ITensor *input, ITensor *weights, ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
const WeightsInfo &weights_info,
ConvolutionMethodHint conv_method)
{
if(conv_method == ConvolutionMethodHint::GEMM)
{
return instantiate_function<arm_compute::NEConvolutionLayer, arm_compute::ITensor, TargetHint::NEON>(input, weights, biases, output, conv_info, weights_info);
}
else
{
return instantiate_direct_function<arm_compute::NEDirectConvolutionLayer, arm_compute::ITensor, TargetHint::NEON>(input, weights, biases, output, conv_info);
}
}
} // namespace
/** Grouped Convolution function */
class GroupedConvolutionFunction final : public arm_compute::IFunction
{
public:
/** Default Constructor */
GroupedConvolutionFunction()
: _convolutions()
{
}
/** Default Destructor */
~GroupedConvolutionFunction() final = default;
/** Prevent instances from being copy constructed */
GroupedConvolutionFunction(const GroupedConvolutionFunction &) = delete;
/** Prevent instances from being copy assigned */
GroupedConvolutionFunction &operator=(const GroupedConvolutionFunction &) = delete;
/** Allow instances to be move constructed */
GroupedConvolutionFunction(GroupedConvolutionFunction &&) noexcept = default;
/** Allow instances to be move assigned */
GroupedConvolutionFunction &operator=(GroupedConvolutionFunction &&) noexcept = default;
/** Adds a convolution
*
* @param convolution Convolution function to add
*/
void add_convolution_function(std::unique_ptr<IFunction> convolution)
{
_convolutions.emplace_back(std::move(convolution));
}
// Inherited methods overriden:
void run() override
{
for(auto &c : _convolutions)
{
c->run();
}
}
private:
std::vector<std::unique_ptr<IFunction>> _convolutions;
};
std::unique_ptr<arm_compute::IFunction> ConvolutionLayer::instantiate_node(GraphContext &ctx, ITensor *input, ITensor *output)
{
// Set weights and biases info
if(_weights.tensor() == nullptr)
{
_weights.set_info(TensorInfo(TensorShape(_conv_width, _conv_height, input->info()->dimension(2) / _num_groups, _ofm),
input->info()->num_channels(), input->info()->data_type(),
input->info()->fixed_point_position()));
}
if(_biases.tensor() == nullptr)
{
_biases.set_info(TensorInfo(TensorShape(_ofm), input->info()->num_channels(), input->info()->data_type(), input->info()->fixed_point_position()));
}
std::unique_ptr<arm_compute::IFunction> func;
_target_hint = ctx.hints().target_hint();
const ConvolutionMethodHint conv_method_hint = ctx.hints().convolution_method_hint();
// Check if the weights and biases are loaded
bool weights_are_loaded = _weights.tensor() != nullptr;
bool biases_are_loaded = _weights.tensor() != nullptr;
// Set bias and weights target
_weights.set_target(_target_hint);
_biases.set_target(_target_hint);
// Calculate output shape
TensorShape output_shape = calculate_convolution_layer_output_shape(input->info()->tensor_shape(), _weights.info().tensor_shape(), _conv_info);
// Output auto inizialitation if not yet initialized
arm_compute::auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->fixed_point_position());
// Create appropriate convolution function
if(_num_groups == 1)
{
func = instantiate_convolution(input, output, conv_method_hint);
ARM_COMPUTE_LOG("Instantiating CLConvolutionLayer");
}
else
{
func = instantiate_grouped_convolution(input, output, conv_method_hint);
ARM_COMPUTE_LOG("Instantiating NEConvolutionLayer");
}
// Fill weights
if(!weights_are_loaded)
{
_weights.allocate_and_fill_if_needed();
}
// Fill biases
if(!biases_are_loaded)
{
_biases.allocate_and_fill_if_needed();
}
ARM_COMPUTE_LOG(" Data Type: " << input->info()->data_type()
<< " Input Shape: " << input->info()->tensor_shape()
<< " Weights shape: " << _weights.info().tensor_shape()
<< " Biases Shape: " << _biases.info().tensor_shape()
<< " Output Shape: " << output->info()->tensor_shape()
<< " PadStrideInfo: " << _conv_info
<< " Groups: " << _num_groups
<< " WeightsInfo: " << _weights_info
<< std::endl);
return func;
}
std::unique_ptr<arm_compute::IFunction> ConvolutionLayer::instantiate_convolution(ITensor *input, ITensor *output, ConvolutionMethodHint conv_method_hint)
{
std::unique_ptr<arm_compute::IFunction> func;
if(_target_hint == TargetHint::OPENCL)
{
func = instantiate<TargetHint::OPENCL>(input, _weights.tensor(), _biases.tensor(), output, _conv_info, _weights_info, conv_method_hint);
}
else
{
func = instantiate<TargetHint::NEON>(input, _weights.tensor(), _biases.tensor(), output, _conv_info, _weights_info, conv_method_hint);
}
return func;
}
std::unique_ptr<arm_compute::IFunction> ConvolutionLayer::instantiate_grouped_convolution(ITensor *input, ITensor *output, ConvolutionMethodHint conv_method_hint)
{
// Get tensor shapes
TensorShape input_shape = input->info()->tensor_shape();
TensorShape output_shape = output->info()->tensor_shape();
TensorShape weights_shape = _weights.info().tensor_shape();
TensorShape biases_shape = _biases.info().tensor_shape();
ARM_COMPUTE_ERROR_ON_MSG((input_shape.z() % _num_groups) != 0, "Input depth not multiple of the number of groups!");
ARM_COMPUTE_ERROR_ON_MSG((output_shape.z() % _num_groups) != 0, "Output depth not multiple of the number of groups!");
ARM_COMPUTE_ERROR_ON_MSG((weights_shape[3] % _num_groups) != 0, "Number of kernels not multiple of the number of groups!");
ARM_COMPUTE_ERROR_ON_MSG((biases_shape.x() % _num_groups) != 0, "Biases not multiple of the number of groups!");
// Create a grouped convolution function
auto grouped_conv = arm_compute::support::cpp14::make_unique<GroupedConvolutionFunction>();
// Create sub-tensors vectors
_is = arm_compute::support::cpp14::make_unique<SubTensor[]>(_num_groups);
_os = arm_compute::support::cpp14::make_unique<SubTensor[]>(_num_groups);
_ws = arm_compute::support::cpp14::make_unique<SubTensor[]>(_num_groups);
_bs = arm_compute::support::cpp14::make_unique<SubTensor[]>(_num_groups);
// Calculate sub-tensor splits
const int input_split = input_shape.z() / _num_groups;
const int output_split = output_shape.z() / _num_groups;
const int weights_split = weights_shape[3] / _num_groups;
const int biases_split = biases_shape.x() / _num_groups;
// Calculate sub-tensor shapes
input_shape.set(2, input_split);
output_shape.set(2, output_split);
weights_shape.set(3, weights_split);
biases_shape.set(0, biases_split);
// Configure sub-tensors
for(int i = 0; i < static_cast<int>(_num_groups); ++i)
{
// Create convolution function
std::unique_ptr<arm_compute::IFunction> func;
// Calculate sub-tensors starting coordinates
Coordinates input_coord(0, 0, input_split * i);
Coordinates output_coord(0, 0, output_split * i);
Coordinates weights_coord(0, 0, 0, weights_split * i);
Coordinates biases_coord(biases_split * i);
// Create sub-tensors for input, output, weights and bias
auto hint_to_use = (_target_hint == TargetHint::OPENCL) ? TargetHint::OPENCL : TargetHint::NEON;
_is[i] = SubTensor(input, input_shape, input_coord, hint_to_use);
_os[i] = SubTensor(output, output_shape, output_coord, hint_to_use);
_ws[i] = SubTensor(_weights.tensor(), weights_shape, weights_coord, hint_to_use);
_bs[i] = SubTensor(_biases.tensor(), biases_shape, biases_coord, hint_to_use);
// Instantiate convolution function
if(_target_hint == TargetHint::OPENCL)
{
func = instantiate<TargetHint::OPENCL>(_is[i].tensor(), _ws[i].tensor(), _bs[i].tensor(), _os[i].tensor(), _conv_info, _weights_info, conv_method_hint);
}
else
{
func = instantiate<TargetHint::NEON>(_is[i].tensor(), _ws[i].tensor(), _bs[i].tensor(), _os[i].tensor(), _conv_info, _weights_info, conv_method_hint);
}
// Add convolution function to the list of convolutions for the grouped convolution
grouped_conv->add_convolution_function(std::move(func));
}
return std::move(grouped_conv);
}