blob: 198890c9ba57abe4680d451f01a7b46403e8c61f [file] [log] [blame]
/*
* Copyright (c) 2016, 2017 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/NEFunctions.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/runtime/Allocator.h"
#include "arm_compute/runtime/BlobLifetimeManager.h"
#include "arm_compute/runtime/MemoryManagerOnDemand.h"
#include "arm_compute/runtime/PoolManager.h"
#include "utils/Utils.h"
using namespace arm_compute;
using namespace utils;
void main_cnn(int argc, const char **argv)
{
ARM_COMPUTE_UNUSED(argc);
ARM_COMPUTE_UNUSED(argv);
// Create NEON allocator
Allocator allocator;
// Create memory manager components
// We need 2 memory managers: 1 for handling the tensors within the functions (mm_layers) and 1 for handling the input and output tensors of the functions (mm_transitions))
auto lifetime_mgr0 = std::make_shared<BlobLifetimeManager>(); // Create lifetime manager
auto lifetime_mgr1 = std::make_shared<BlobLifetimeManager>(); // Create lifetime manager
auto pool_mgr0 = std::make_shared<PoolManager>(); // Create pool manager
auto pool_mgr1 = std::make_shared<PoolManager>(); // Create pool manager
auto mm_layers = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr0, pool_mgr0); // Create the memory manager
auto mm_transitions = std::make_shared<MemoryManagerOnDemand>(lifetime_mgr1, pool_mgr1); // Create the memory manager
// The src tensor should contain the input image
Tensor src;
// The weights and biases tensors should be initialized with the values inferred with the training
Tensor weights0;
Tensor weights1;
Tensor weights2;
Tensor biases0;
Tensor biases1;
Tensor biases2;
Tensor out_conv0;
Tensor out_conv1;
Tensor out_act0;
Tensor out_act1;
Tensor out_act2;
Tensor out_pool0;
Tensor out_pool1;
Tensor out_fc0;
Tensor out_softmax;
// Create layers and set memory manager where allowed to manage internal memory requirements
NEConvolutionLayer conv0(mm_layers);
NEConvolutionLayer conv1(mm_layers);
NEPoolingLayer pool0;
NEPoolingLayer pool1;
NEFullyConnectedLayer fc0(mm_layers);
NEActivationLayer act0;
NEActivationLayer act1;
NEActivationLayer act2;
NESoftmaxLayer softmax(mm_layers);
/* [Initialize tensors] */
// Initialize src tensor
constexpr unsigned int width_src_image = 32;
constexpr unsigned int height_src_image = 32;
constexpr unsigned int ifm_src_img = 1;
const TensorShape src_shape(width_src_image, height_src_image, ifm_src_img);
src.allocator()->init(TensorInfo(src_shape, 1, DataType::F32));
// Initialize tensors of conv0
constexpr unsigned int kernel_x_conv0 = 5;
constexpr unsigned int kernel_y_conv0 = 5;
constexpr unsigned int ofm_conv0 = 8;
const TensorShape weights_shape_conv0(kernel_x_conv0, kernel_y_conv0, src_shape.z(), ofm_conv0);
const TensorShape biases_shape_conv0(weights_shape_conv0[3]);
const TensorShape out_shape_conv0(src_shape.x(), src_shape.y(), weights_shape_conv0[3]);
weights0.allocator()->init(TensorInfo(weights_shape_conv0, 1, DataType::F32));
biases0.allocator()->init(TensorInfo(biases_shape_conv0, 1, DataType::F32));
out_conv0.allocator()->init(TensorInfo(out_shape_conv0, 1, DataType::F32));
// Initialize tensor of act0
out_act0.allocator()->init(TensorInfo(out_shape_conv0, 1, DataType::F32));
// Initialize tensor of pool0
TensorShape out_shape_pool0 = out_shape_conv0;
out_shape_pool0.set(0, out_shape_pool0.x() / 2);
out_shape_pool0.set(1, out_shape_pool0.y() / 2);
out_pool0.allocator()->init(TensorInfo(out_shape_pool0, 1, DataType::F32));
// Initialize tensors of conv1
constexpr unsigned int kernel_x_conv1 = 3;
constexpr unsigned int kernel_y_conv1 = 3;
constexpr unsigned int ofm_conv1 = 16;
const TensorShape weights_shape_conv1(kernel_x_conv1, kernel_y_conv1, out_shape_pool0.z(), ofm_conv1);
const TensorShape biases_shape_conv1(weights_shape_conv1[3]);
const TensorShape out_shape_conv1(out_shape_pool0.x(), out_shape_pool0.y(), weights_shape_conv1[3]);
weights1.allocator()->init(TensorInfo(weights_shape_conv1, 1, DataType::F32));
biases1.allocator()->init(TensorInfo(biases_shape_conv1, 1, DataType::F32));
out_conv1.allocator()->init(TensorInfo(out_shape_conv1, 1, DataType::F32));
// Initialize tensor of act1
out_act1.allocator()->init(TensorInfo(out_shape_conv1, 1, DataType::F32));
// Initialize tensor of pool1
TensorShape out_shape_pool1 = out_shape_conv1;
out_shape_pool1.set(0, out_shape_pool1.x() / 2);
out_shape_pool1.set(1, out_shape_pool1.y() / 2);
out_pool1.allocator()->init(TensorInfo(out_shape_pool1, 1, DataType::F32));
// Initialize tensor of fc0
constexpr unsigned int num_labels = 128;
const TensorShape weights_shape_fc0(out_shape_pool1.x() * out_shape_pool1.y() * out_shape_pool1.z(), num_labels);
const TensorShape biases_shape_fc0(num_labels);
const TensorShape out_shape_fc0(num_labels);
weights2.allocator()->init(TensorInfo(weights_shape_fc0, 1, DataType::F32));
biases2.allocator()->init(TensorInfo(biases_shape_fc0, 1, DataType::F32));
out_fc0.allocator()->init(TensorInfo(out_shape_fc0, 1, DataType::F32));
// Initialize tensor of act2
out_act2.allocator()->init(TensorInfo(out_shape_fc0, 1, DataType::F32));
// Initialize tensor of softmax
const TensorShape out_shape_softmax(out_shape_fc0.x());
out_softmax.allocator()->init(TensorInfo(out_shape_softmax, 1, DataType::F32));
/* -----------------------End: [Initialize tensors] */
/* [Configure functions] */
// in:32x32x1: 5x5 convolution, 8 output features maps (OFM)
conv0.configure(&src, &weights0, &biases0, &out_conv0, PadStrideInfo(1 /* stride_x */, 1 /* stride_y */, 2 /* pad_x */, 2 /* pad_y */));
// in:32x32x8, out:32x32x8, Activation function: relu
act0.configure(&out_conv0, &out_act0, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// in:32x32x8, out:16x16x8 (2x2 pooling), Pool type function: Max
pool0.configure(&out_act0, &out_pool0, PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2 /* stride_x */, 2 /* stride_y */)));
// in:16x16x8: 3x3 convolution, 16 output features maps (OFM)
conv1.configure(&out_pool0, &weights1, &biases1, &out_conv1, PadStrideInfo(1 /* stride_x */, 1 /* stride_y */, 1 /* pad_x */, 1 /* pad_y */));
// in:16x16x16, out:16x16x16, Activation function: relu
act1.configure(&out_conv1, &out_act1, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// in:16x16x16, out:8x8x16 (2x2 pooling), Pool type function: Average
pool1.configure(&out_act1, &out_pool1, PoolingLayerInfo(PoolingType::AVG, 2, PadStrideInfo(2 /* stride_x */, 2 /* stride_y */)));
// in:8x8x16, out:128
fc0.configure(&out_pool1, &weights2, &biases2, &out_fc0);
// in:128, out:128, Activation function: relu
act2.configure(&out_fc0, &out_act2, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
// in:128, out:128
softmax.configure(&out_act2, &out_softmax);
/* -----------------------End: [Configure functions] */
/*[ Add tensors to memory manager ]*/
// We need 2 memory groups for handling the input and output
// We call explicitly allocate after manage() in order to avoid overlapping lifetimes
MemoryGroup memory_group0(mm_transitions);
MemoryGroup memory_group1(mm_transitions);
memory_group0.manage(&out_conv0);
out_conv0.allocator()->allocate();
memory_group1.manage(&out_act0);
out_act0.allocator()->allocate();
memory_group0.manage(&out_pool0);
out_pool0.allocator()->allocate();
memory_group1.manage(&out_conv1);
out_conv1.allocator()->allocate();
memory_group0.manage(&out_act1);
out_act1.allocator()->allocate();
memory_group1.manage(&out_pool1);
out_pool1.allocator()->allocate();
memory_group0.manage(&out_fc0);
out_fc0.allocator()->allocate();
memory_group1.manage(&out_act2);
out_act2.allocator()->allocate();
memory_group0.manage(&out_softmax);
out_softmax.allocator()->allocate();
/* -----------------------End: [ Add tensors to memory manager ] */
/* [Allocate tensors] */
// Now that the padding requirements are known we can allocate all tensors
src.allocator()->allocate();
weights0.allocator()->allocate();
weights1.allocator()->allocate();
weights2.allocator()->allocate();
biases0.allocator()->allocate();
biases1.allocator()->allocate();
biases2.allocator()->allocate();
/* -----------------------End: [Allocate tensors] */
// Finalize layers memory manager
// Set allocator that the memory manager will use
mm_layers->set_allocator(&allocator);
// Number of pools that the manager will create. This specifies how many layers you want to run in parallel
mm_layers->set_num_pools(1);
// Finalize the manager. (Validity checks, memory allocations etc)
mm_layers->finalize();
// Finalize transitions memory manager
// Set allocator that the memory manager will use
mm_transitions->set_allocator(&allocator);
// Number of pools that the manager will create. This specifies how many models we can run in parallel.
// Setting to 2 as we need one for the input and one for the output at any given time
mm_transitions->set_num_pools(2);
// Finalize the manager. (Validity checks, memory allocations etc)
mm_transitions->finalize();
/* [Initialize weights and biases tensors] */
// Once the tensors have been allocated, the src, weights and biases tensors can be initialized
// ...
/* -----------------------[Initialize weights and biases tensors] */
/* [Execute the functions] */
// Acquire memory for the memory groups
memory_group0.acquire();
memory_group1.acquire();
conv0.run();
act0.run();
pool0.run();
conv1.run();
act1.run();
pool1.run();
fc0.run();
act2.run();
softmax.run();
// Release memory
memory_group0.release();
memory_group1.release();
/* -----------------------End: [Execute the functions] */
}
/** Main program for cnn test
*
* The example implements the following CNN architecture:
*
* Input -> conv0:5x5 -> act0:relu -> pool:2x2 -> conv1:3x3 -> act1:relu -> pool:2x2 -> fc0 -> act2:relu -> softmax
*
* @param[in] argc Number of arguments
* @param[in] argv Arguments
*/
int main(int argc, const char **argv)
{
return utils::run_example(argc, argv, main_cnn);
}