blob: baf829b473a4317925359f826714e16eddbe11bb [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "Utils.h"
#ifdef ARM_COMPUTE_CL
#include "arm_compute/runtime/CL/CLScheduler.h"
#endif /* ARM_COMPUTE_CL */
#include <cctype>
#include <cerrno>
#include <iomanip>
#include <string>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wswitch-default"
#define STB_IMAGE_IMPLEMENTATION
#include "stb/stb_image.h"
#pragma GCC diagnostic pop
namespace arm_compute
{
namespace utils
{
namespace
{
/* Advance the iterator to the first character which is not a comment
*
* @param[in,out] fs Stream to drop comments from
*/
void discard_comments(std::ifstream &fs)
{
while(fs.peek() == '#')
{
fs.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
}
/* Advance the string iterator to the next character which is neither a space or a comment
*
* @param[in,out] fs Stream to drop comments from
*/
void discard_comments_and_spaces(std::ifstream &fs)
{
while(true)
{
discard_comments(fs);
if(isspace(fs.peek()) == 0)
{
break;
}
fs.ignore(1);
}
}
} // namespace
#ifndef BENCHMARK_EXAMPLES
int run_example(int argc, char **argv, std::unique_ptr<Example> example)
{
std::cout << "\n"
<< argv[0] << "\n\n";
try
{
bool status = example->do_setup(argc, argv);
if(!status)
{
return 1;
}
example->do_run();
example->do_teardown();
std::cout << "\nTest passed\n";
return 0;
}
#ifdef ARM_COMPUTE_CL
catch(cl::Error &err)
{
std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
std::cerr << std::endl
<< "ERROR " << err.what() << "(" << err.err() << ")" << std::endl;
std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
}
#endif /* ARM_COMPUTE_CL */
catch(std::runtime_error &err)
{
std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
std::cerr << std::endl
<< "ERROR " << err.what() << " " << (errno ? strerror(errno) : "") << std::endl;
std::cerr << "!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
}
std::cout << "\nTest FAILED\n";
return -1;
}
#endif /* BENCHMARK_EXAMPLES */
void draw_detection_rectangle(ITensor *tensor, const DetectionWindow &rect, uint8_t r, uint8_t g, uint8_t b)
{
ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(tensor, Format::RGB888);
uint8_t *top = tensor->info()->offset_element_in_bytes(Coordinates(rect.x, rect.y)) + tensor->buffer();
uint8_t *bottom = tensor->info()->offset_element_in_bytes(Coordinates(rect.x, rect.y + rect.height)) + tensor->buffer();
uint8_t *left = top;
uint8_t *right = tensor->info()->offset_element_in_bytes(Coordinates(rect.x + rect.width, rect.y)) + tensor->buffer();
size_t stride = tensor->info()->strides_in_bytes()[Window::DimY];
for(size_t x = 0; x < rect.width; ++x)
{
top[0] = r;
top[1] = g;
top[2] = b;
bottom[0] = r;
bottom[1] = g;
bottom[2] = b;
top += 3;
bottom += 3;
}
for(size_t y = 0; y < rect.height; ++y)
{
left[0] = r;
left[1] = g;
left[2] = b;
right[0] = r;
right[1] = g;
right[2] = b;
left += stride;
right += stride;
}
}
ImageType get_image_type_from_file(const std::string &filename)
{
ImageType type = ImageType::UNKNOWN;
try
{
// Open file
std::ifstream fs;
fs.exceptions(std::ifstream::failbit | std::ifstream::badbit);
fs.open(filename, std::ios::in | std::ios::binary);
// Identify type from magic number
std::array<unsigned char, 2> magic_number{ { 0 } };
fs >> magic_number[0] >> magic_number[1];
// PPM check
if(static_cast<char>(magic_number[0]) == 'P' && static_cast<char>(magic_number[1]) == '6')
{
type = ImageType::PPM;
}
else if(magic_number[0] == 0xFF && magic_number[1] == 0xD8)
{
type = ImageType::JPEG;
}
fs.close();
}
catch(std::runtime_error &e)
{
ARM_COMPUTE_ERROR("Accessing %s: %s", filename.c_str(), e.what());
}
return type;
}
std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs)
{
// Check the PPM magic number is valid
std::array<char, 2> magic_number{ { 0 } };
fs >> magic_number[0] >> magic_number[1];
ARM_COMPUTE_ERROR_ON_MSG(magic_number[0] != 'P' || magic_number[1] != '6', "Invalid file type");
ARM_COMPUTE_UNUSED(magic_number);
discard_comments_and_spaces(fs);
unsigned int width = 0;
fs >> width;
discard_comments_and_spaces(fs);
unsigned int height = 0;
fs >> height;
discard_comments_and_spaces(fs);
int max_val = 0;
fs >> max_val;
discard_comments(fs);
ARM_COMPUTE_ERROR_ON_MSG(isspace(fs.peek()) == 0, "Invalid PPM header");
fs.ignore(1);
return std::make_tuple(width, height, max_val);
}
std::tuple<std::vector<unsigned long>, bool, std::string> parse_npy_header(std::ifstream &fs) //NOLINT
{
std::vector<unsigned long> shape; // NOLINT
// Read header
std::string header = npy::read_header(fs);
// Parse header
bool fortran_order = false;
std::string typestr;
npy::parse_header(header, typestr, fortran_order, shape);
std::reverse(shape.begin(), shape.end());
return std::make_tuple(shape, fortran_order, typestr);
}
/** This function returns the amount of memory free reading from /proc/meminfo
*
* @return The free memory in kB
*/
uint64_t get_mem_free_from_meminfo()
{
std::string line_attribute;
std::ifstream file_meminfo("/proc/meminfo");
if(file_meminfo.is_open())
{
while(!(file_meminfo >> line_attribute).fail())
{
//Test if is the line containing MemFree
if(line_attribute == "MemFree:")
{
uint64_t mem_available;
if(!(file_meminfo >> mem_available).fail())
{
return mem_available;
}
else
{
return 0;
}
}
// if it's not MemFree ignore rest of the line
file_meminfo.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
}
}
// Nothing found or an error during opening the file
return 0;
}
/** This function loads prebuilt opencl kernels from a file
*
* @param[in] filename Name of the file to be used to load the kernels
*/
void restore_program_cache_from_file(const std::string &filename)
{
#ifdef ARM_COMPUTE_CL
std::ifstream cache_file(filename, std::ios::binary);
if(cache_file.is_open())
{
if(!CLScheduler::get().is_initialised())
{
arm_compute::CLScheduler::get().default_init();
}
while(!cache_file.eof())
{
size_t name_len = 0;
size_t binary_len = 0;
cache_file.read(reinterpret_cast<char *>(&name_len), sizeof(size_t));
cache_file.read(reinterpret_cast<char *>(&binary_len), sizeof(size_t));
if(name_len == 0 || binary_len == 0)
{
break;
}
std::vector<char> tmp(name_len);
std::vector<unsigned char> binary(binary_len);
std::string name;
cache_file.read(tmp.data(), name_len);
name.assign(tmp.data(), name_len);
tmp.resize(binary_len);
cache_file.read(reinterpret_cast<char *>(binary.data()), binary_len);
cl::Context context = arm_compute::CLScheduler::get().context();
cl::Program::Binaries binaries{ binary };
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
cl::Program program(context, devices, binaries);
program.build();
CLKernelLibrary::get().add_built_program(name, program);
}
cache_file.close();
}
#endif /* ARM_COMPUTE_CL */
}
/** This function saves opencl kernels library to a file
*
* @param[in] filename Name of the file to be used to save the library
*/
void save_program_cache_to_file(const std::string &filename)
{
#ifdef ARM_COMPUTE_CL
if(CLScheduler::get().is_initialised())
{
std::ofstream cache_file(filename, std::ios::binary);
if(cache_file.is_open())
{
for(const auto &it : CLKernelLibrary::get().get_built_programs())
{
std::vector<std::vector<unsigned char>> binaries = it.second.getInfo<CL_PROGRAM_BINARIES>();
ARM_COMPUTE_ERROR_ON(binaries.size() != 1);
const std::string kernel_name = it.first;
size_t kernel_name_size = kernel_name.length();
size_t binary_size = binaries[0].size();
cache_file.write(reinterpret_cast<char *>(&kernel_name_size), sizeof(size_t));
cache_file.write(reinterpret_cast<char *>(&binary_size), sizeof(size_t));
cache_file.write(kernel_name.c_str(), kernel_name_size);
cache_file.write(reinterpret_cast<const char *>(binaries[0].data()), binaries[0].size());
}
cache_file.close();
}
else
{
ARM_COMPUTE_ERROR("Cannot open cache file");
}
}
#endif /* ARM_COMPUTE_CL */
}
} // namespace utils
} // namespace arm_compute