blob: ee2b2f4b284df452470e80120101d09087e81ae6 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NELSTMLayer.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/common/LSTMParams.h"
#include <cmath>
#include <memory>
#include <tuple>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
NELSTMLayer::NELSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _fully_connected_input_gate(), _accum_input_gate1(), _subtract_input_gate(), _pixelwise_mul_input_gate(), _activation_input_gate(),
_fully_connected_forget_gate(), _accum_forget_gate1(), _pixelwise_mul_forget_gate(), _activation_forget_gate(), _fully_connected_cell_state(), _gemm_cell_state1(), _transpose_cell_state(),
_accum_cell_state1(), _accum_cell_state2(), _pixelwise_mul_cell_state1(), _activation_cell_state(), _cell_clip(), _pixelwise_mul_cell_state2(), _fully_connected_output(),
_pixelwise_mul_output_state1(), _accum_output1(), _activation_output(), _activation_output_state(), _pixelwise_mul_output_state2(), _fully_connected_output_state(), _projection_clip(),
_copy_cell_state(), _copy_output(), _concat_scratch_buffer(), _concat_inputs_forget_gate(), _concat_weights_forget_gate(), _concat_weights_input_gate(), _concat_weights_output(),
_mean_std_norm_input_gate(), _pixelwise_mul_input_gate_coeff(), _accum_input_gate_bias(), _mean_std_norm_forget_gate(), _pixelwise_mul_forget_gate_coeff(), _accum_forget_gate_bias(),
_mean_std_norm_cell_gate(), _pixelwise_mul_cell_gate_coeff(), _accum_cell_gate_bias(), _mean_std_norm_output_gate(), _pixelwise_mul_output_gate_coeff(), _accum_output_gate_bias(), _input_gate_out1(),
_input_gate_out2(), _input_gate_out3(), _input_gate_out4(), _forget_gate_out1(), _forget_gate_out2(), _forget_gate_out3(), _forget_gate_out4(), _forget_gate_out5(), _forget_gate_out6(),
_cell_state_out1(), _cell_state_out2(), _cell_state_out3(), _cell_state_out4(), _cell_state_out5(), _output1(), _output2(), _output3(), _output4(), _cell_state_activation(), _output_state1(), _ones(),
_input_layer_norm_out1(), _input_layer_norm_out2(), _forget_layer_norm_out1(), _forget_layer_norm_out2(), _cell_layer_norm_out1(), _cell_layer_norm_out2(), _output_layer_norm_out1(),
_output_layer_norm_out2(), _run_peephole_opt(false), _run_cifg_opt(false), _perform_cell_clipping(false), _has_projection_weights(false), _perform_projection_clipping(false), _is_prepared(false),
_is_layer_norm_lstm(false)
{
}
void NELSTMLayer::configure(const ITensor *input,
const ITensor *input_to_forget_weights, const ITensor *input_to_cell_weights, const ITensor *input_to_output_weights,
const ITensor *recurrent_to_forget_weights, const ITensor *recurrent_to_cell_weights, const ITensor *recurrent_to_output_weights,
const ITensor *forget_gate_bias, const ITensor *cell_bias, const ITensor *output_gate_bias,
const ITensor *output_state_in, const ITensor *cell_state_in,
ITensor *scratch_buffer, ITensor *output_state_out, ITensor *cell_state_out, ITensor *output,
const LSTMParams<ITensor> &lstm_params, const ActivationLayerInfo &activation_info, float cell_threshold, float projection_threshold)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input,
input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias,
output_state_in, cell_state_in,
scratch_buffer, output_state_out, cell_state_out, output);
_is_layer_norm_lstm = lstm_params.use_layer_norm();
// Set lstm parameters
LSTMParams<ITensorInfo> lstm_params_info;
if(lstm_params.has_peephole_opt())
{
lstm_params_info.set_peephole_params(lstm_params.cell_to_forget_weights()->info(), lstm_params.cell_to_output_weights()->info());
}
if(lstm_params.has_projection())
{
lstm_params_info.set_projection_params(lstm_params.projection_weights()->info(),
lstm_params.projection_bias() != nullptr ? lstm_params.projection_bias()->info() : nullptr);
}
if(!lstm_params.has_cifg_opt())
{
const ITensorInfo *cell_to_input_weights_info = (lstm_params.has_peephole_opt()) ? lstm_params.cell_to_input_weights()->info() : nullptr;
lstm_params_info.set_cifg_params(lstm_params.input_to_input_weights()->info(), lstm_params.recurrent_to_input_weights()->info(),
cell_to_input_weights_info, lstm_params.input_gate_bias()->info());
}
// Validate
ARM_COMPUTE_ERROR_THROW_ON(NELSTMLayer::validate(input->info(), input_to_forget_weights->info(),
input_to_cell_weights->info(), input_to_output_weights->info(),
recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
output_state_in->info(), cell_state_in->info(),
scratch_buffer->info(), output_state_out->info(), cell_state_out->info(), output->info(),
lstm_params_info, activation_info, cell_threshold, projection_threshold));
const TensorShape cell_state_shape = cell_state_in->info()->tensor_shape();
// Configure block that calculates the forget gate
// forget_gate = Activation(input * input_to_forget_weights + output_state_in * recurrent_to_forget_weights + PixelWiseMul(cell_state, cell_to_forget_weights) + forget_gate_bias)
// We optimize this as follows:
// forget_gate = Activation( (input,output_state_in) * (input_to_forget_weights,recurrent_to_forget_weights) + PixelWiseMul(cell_state, cell_to_forget_weights) + forget_gate_bias)
_forget_gate_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_forget_gate_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_forget_gate_out5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
std::vector<const ITensor *> inputs_vector;
inputs_vector.emplace_back(input);
inputs_vector.emplace_back(output_state_in);
_memory_group.manage(&_forget_gate_out2);
_concat_inputs_forget_gate.configure(inputs_vector, &_forget_gate_out2, Window::DimX);
std::vector<const ITensor *> weights_vector;
weights_vector.emplace_back(input_to_forget_weights);
weights_vector.emplace_back(recurrent_to_forget_weights);
_concat_weights_forget_gate.configure(weights_vector, &_forget_gate_out6, Window::DimX);
_memory_group.manage(&_forget_gate_out5);
_fully_connected_forget_gate.configure(&_forget_gate_out2, &_forget_gate_out6, (_is_layer_norm_lstm) ? nullptr : forget_gate_bias, &_forget_gate_out5);
_memory_group.manage(&_forget_gate_out1);
_memory_group.manage(&_forget_gate_out3);
_forget_gate_out6.allocator()->allocate();
Tensor *forget_gate_out = &_forget_gate_out5;
if(lstm_params.has_peephole_opt())
{
_forget_gate_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_run_peephole_opt = true;
_memory_group.manage(&_forget_gate_out4);
_pixelwise_mul_forget_gate.configure(cell_state_in, lstm_params.cell_to_forget_weights(), &_forget_gate_out4, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_accum_forget_gate1.configure(&_forget_gate_out5, &_forget_gate_out4, &_forget_gate_out3, ConvertPolicy::SATURATE);
_forget_gate_out4.allocator()->allocate();
_forget_gate_out5.allocator()->allocate();
forget_gate_out = &_forget_gate_out3;
}
else
{
_forget_gate_out3.allocator()->allocate();
}
if(_is_layer_norm_lstm)
{
_forget_layer_norm_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_forget_layer_norm_out2.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_forget_layer_norm_out1);
_memory_group.manage(&_forget_layer_norm_out2);
_mean_std_norm_forget_gate.configure(forget_gate_out);
_pixelwise_mul_forget_gate_coeff.configure(forget_gate_out, lstm_params.forget_layer_norm_weights(), &_forget_layer_norm_out1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
// forget_gate_out is going to be reassigned, so allocate the tensor that it was assigned to before
forget_gate_out->allocator()->allocate();
_accum_forget_gate_bias.configure(&_forget_layer_norm_out1, forget_gate_bias, &_forget_layer_norm_out2, ConvertPolicy::SATURATE);
_forget_layer_norm_out1.allocator()->allocate();
forget_gate_out = &_forget_layer_norm_out2;
}
_activation_forget_gate.configure(forget_gate_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
// Configure block that calculates the input gate
// input_gate = Activation(input * input_to_input_weights + output_state * recurrent_to_input_weights + PixelWiseMul(cell_state, cell_to_input_weights) + input_gate_bias), without CIFG
// input_gate = 1 - forget_gate, with CIFG
// We optimize this as follows:
// input_gate = Activation((input,output_state) * (input_to_input_weights,recurrent_to_input_weights) + PixelWiseMul(cell_state, cell_to_input_weights) + input_gate_bias), without CIFG
_input_gate_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
Tensor *input_gate_out = &_input_gate_out1;
if(lstm_params.has_cifg_opt())
{
_memory_group.manage(&_input_gate_out1);
_ones.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_subtract_input_gate.configure(&_ones, forget_gate_out, &_input_gate_out1, ConvertPolicy::SATURATE);
_ones.allocator()->allocate();
_run_cifg_opt = true;
}
else
{
_input_gate_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_input_gate_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
std::vector<const ITensor *> lstm_weights;
lstm_weights.emplace_back(lstm_params.input_to_input_weights());
lstm_weights.emplace_back(lstm_params.recurrent_to_input_weights());
_concat_weights_input_gate.configure(lstm_weights, &_input_gate_out2, Window::DimX);
_memory_group.manage(&_input_gate_out1);
_memory_group.manage(&_input_gate_out4);
_fully_connected_input_gate.configure(&_forget_gate_out2, &_input_gate_out2, (_is_layer_norm_lstm) ? nullptr : lstm_params.input_gate_bias(), &_input_gate_out3);
_input_gate_out2.allocator()->allocate();
input_gate_out = &_input_gate_out3;
if(_run_peephole_opt)
{
_memory_group.manage(&_input_gate_out4);
_pixelwise_mul_input_gate.configure(cell_state_in, lstm_params.cell_to_input_weights(), &_input_gate_out4, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_accum_input_gate1.configure(&_input_gate_out3, &_input_gate_out4, &_input_gate_out1, ConvertPolicy::SATURATE);
_input_gate_out3.allocator()->allocate();
_input_gate_out4.allocator()->allocate();
input_gate_out = &_input_gate_out1;
}
else
{
_input_gate_out1.allocator()->allocate();
}
if(_is_layer_norm_lstm)
{
_input_layer_norm_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_input_layer_norm_out2.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_input_layer_norm_out1);
_memory_group.manage(&_input_layer_norm_out2);
_mean_std_norm_input_gate.configure(input_gate_out);
_pixelwise_mul_input_gate_coeff.configure(input_gate_out, lstm_params.input_layer_norm_weights(), &_input_layer_norm_out1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
// input_gate_out is going to be reassigned, so allocate the tensor that it was assigned to before
input_gate_out->allocator()->allocate();
_accum_input_gate_bias.configure(&_input_layer_norm_out1, lstm_params.input_gate_bias(), &_input_layer_norm_out2, ConvertPolicy::SATURATE);
_input_layer_norm_out1.allocator()->allocate();
input_gate_out = &_input_layer_norm_out2;
}
_activation_input_gate.configure(input_gate_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
}
// Configure block that calculates the cell state
// cell_state = Clip((PixelwiseMul(input_gate, Activation(input * input_to_cell_weights + output_state_in * recurrent_to_cell_weights + cell_bias)) + PixelwiseMul(forget_gate, cell_state)), cell_threshold)
TensorShape cell_state1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
_cell_state_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_state_out2.allocator()->init(TensorInfo(cell_state1_shape, 1, input->info()->data_type()));
_cell_state_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_state_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_state_out5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_cell_state_out1);
_fully_connected_cell_state.configure(input, input_to_cell_weights, (_is_layer_norm_lstm) ? nullptr : cell_bias, &_cell_state_out1);
_memory_group.manage(&_cell_state_out2);
_transpose_cell_state.configure(recurrent_to_cell_weights, &_cell_state_out2);
_memory_group.manage(&_cell_state_out3);
_gemm_cell_state1.configure(output_state_in, &_cell_state_out2, nullptr, &_cell_state_out3, 1.f, 0.f);
_cell_state_out2.allocator()->allocate();
_memory_group.manage(&_cell_state_out4);
_accum_cell_state1.configure(&_cell_state_out1, &_cell_state_out3, &_cell_state_out4, ConvertPolicy::SATURATE);
Tensor *cell_state_out_ptr = &_cell_state_out4;
if(_is_layer_norm_lstm)
{
_cell_layer_norm_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_cell_layer_norm_out2.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_cell_layer_norm_out1);
_memory_group.manage(&_cell_layer_norm_out2);
_mean_std_norm_cell_gate.configure(cell_state_out_ptr);
_pixelwise_mul_cell_gate_coeff.configure(cell_state_out_ptr, lstm_params.cell_layer_norm_weights(), &_cell_layer_norm_out1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
// cell_state_out_ptr is going to be reassigned, so allocate the tensor that it was assigned to before
cell_state_out_ptr->allocator()->allocate();
_accum_cell_gate_bias.configure(&_cell_layer_norm_out1, cell_bias, &_cell_layer_norm_out2, ConvertPolicy::SATURATE);
_cell_layer_norm_out1.allocator()->allocate();
cell_state_out_ptr = &_cell_layer_norm_out2;
}
_activation_cell_state.configure(cell_state_out_ptr, nullptr, activation_info);
_memory_group.manage(&_cell_state_out5);
_pixelwise_mul_cell_state1.configure(cell_state_out_ptr, input_gate_out, &_cell_state_out5, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
cell_state_out_ptr->allocator()->allocate();
_pixelwise_mul_cell_state2.configure(forget_gate_out, cell_state_in, &_cell_state_out3, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_accum_cell_state2.configure(&_cell_state_out5, &_cell_state_out3, &_cell_state_out1, ConvertPolicy::SATURATE);
_cell_state_out3.allocator()->allocate();
_cell_state_out5.allocator()->allocate();
// Perform clipping
if(cell_threshold != 0.f)
{
_perform_cell_clipping = true;
_cell_clip.configure(&_cell_state_out1, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -cell_threshold, cell_threshold));
}
// Configure block that calculates the output
// output_state_out = Activation(input * input_to_output_weights + output_state_in * recurrent_to_output_weights + PixelWiseMul(cell_state, cell_to_output_weights) + output_gate_bias)
// We optimize this as follows:
// output_state_out = Activation( (input,output_state_in) * (input_to_output_weights, recurrent_to_output_weights) + PixelWiseMul(cell_state, cell_to_output_weights) + output_gate_bias)
_output1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_output4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
std::vector<const ITensor *> in_out_weights;
in_out_weights.emplace_back(input_to_output_weights);
in_out_weights.emplace_back(recurrent_to_output_weights);
_concat_weights_output.configure(in_out_weights, &_output2, Window::DimX);
_memory_group.manage(&_output1);
_memory_group.manage(&_output4);
_fully_connected_output.configure(&_forget_gate_out2, &_output2, (_is_layer_norm_lstm) ? nullptr : output_gate_bias, &_output4);
_output2.allocator()->allocate();
_forget_gate_out2.allocator()->allocate();
Tensor *output_gate_out = &_output4;
if(lstm_params.has_peephole_opt())
{
_output3.allocator()->init(TensorInfo(_cell_state_out1.info()->tensor_shape(), 1, input->info()->data_type()));
_memory_group.manage(&_output3);
_pixelwise_mul_output_state1.configure(&_cell_state_out1, lstm_params.cell_to_output_weights(), &_output3, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_accum_output1.configure(&_output4, &_output3, &_output1, ConvertPolicy::SATURATE);
_output4.allocator()->allocate();
output_gate_out = &_output1;
// Allocate intermediate buffers
_output3.allocator()->allocate();
}
else
{
_output1.allocator()->allocate();
}
if(_is_layer_norm_lstm)
{
_output_layer_norm_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_output_layer_norm_out2.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_output_layer_norm_out1);
_memory_group.manage(&_output_layer_norm_out2);
_mean_std_norm_output_gate.configure(output_gate_out);
_pixelwise_mul_output_gate_coeff.configure(output_gate_out, lstm_params.output_layer_norm_weights(), &_output_layer_norm_out1, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
// output_gate_out is going to be reassigned, so allocate the tensor that it was assigned to before
output_gate_out->allocator()->allocate();
_accum_output_gate_bias.configure(&_output_layer_norm_out1, output_gate_bias, &_output_layer_norm_out2, ConvertPolicy::SATURATE);
_output_layer_norm_out1.allocator()->allocate();
output_gate_out = &_output_layer_norm_out2;
}
_activation_output.configure(output_gate_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
// Configure block that calculates the output state
/** lstm_res = PixelwiseMul(output, Activation(cell_state))
*
* -- Clip(lstm_res * projection_weights + projection_bias, projection_threshold) , if there is a projection
* /
* output_state = --
* \
* -- lstm_res , otherwise
*/
ITensor *output_state_out_tmp = lstm_params.has_projection() ? &_output_state1 : output_state_out;
_cell_state_activation.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_output_state1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
_memory_group.manage(&_cell_state_activation);
_activation_output_state.configure(&_cell_state_out1, &_cell_state_activation, activation_info);
_pixelwise_mul_output_state2.configure(&_cell_state_activation, output_gate_out, output_state_out_tmp, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO);
_cell_state_activation.allocator()->allocate();
output_gate_out->allocator()->allocate();
if(lstm_params.has_projection())
{
_has_projection_weights = true;
_fully_connected_output_state.configure(output_state_out_tmp, lstm_params.projection_weights(), lstm_params.projection_bias(), output_state_out);
_output_state1.allocator()->allocate();
// Perform clipping
if(projection_threshold != 0.f)
{
_perform_projection_clipping = true;
_projection_clip.configure(output_state_out, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -projection_threshold, projection_threshold));
}
}
// Copy cell state and output
_copy_cell_state.configure(&_cell_state_out1, cell_state_out);
_copy_output.configure(output_state_out, output);
// Vector for holding the tensors to store in scratch buffer
std::vector<ITensor *> scratch_inputs;
if(!lstm_params.has_cifg_opt())
{
scratch_inputs.emplace_back(input_gate_out);
}
scratch_inputs.emplace_back(&_cell_state_out1);
scratch_inputs.emplace_back(forget_gate_out);
scratch_inputs.emplace_back(output_gate_out);
_concat_scratch_buffer.configure(scratch_inputs, scratch_buffer, Window::DimX);
input_gate_out->allocator()->allocate();
_cell_state_out1.allocator()->allocate();
forget_gate_out->allocator()->allocate();
output_gate_out->allocator()->allocate();
}
Status NELSTMLayer::validate(const ITensorInfo *input,
const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
const ITensorInfo *output_state_in, const ITensorInfo *cell_state_in,
const ITensorInfo *scratch_buffer, const ITensorInfo *output_state_out, const ITensorInfo *cell_state_out, const ITensorInfo *output,
const LSTMParams<ITensorInfo> &lstm_params, const ActivationLayerInfo &activation_info, float cell_threshold, float projection_threshold)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input,
input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias,
output_state_in, cell_state_in,
scratch_buffer, output_state_out, cell_state_out, output);
// Check data types
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input,
input_to_forget_weights, input_to_cell_weights, input_to_output_weights,
recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
forget_gate_bias, cell_bias, output_gate_bias,
output_state_in, cell_state_in,
scratch_buffer, output_state_out, cell_state_out, output);
// Check dimensions
ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_forget_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_cell_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_forget_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_cell_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(cell_bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(output_gate_bias->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_in->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_in->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(scratch_buffer->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(output_state_out->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_state_out->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(cell_bias->dimension(0) * 4 != scratch_buffer->dimension(0)
&& cell_bias->dimension(0) * 3 != scratch_buffer->dimension(0));
const unsigned int num_batches = input->dimension(1);
const unsigned int num_cells = input_to_output_weights->dimension(1);
if(lstm_params.use_layer_norm())
{
// If CIFG is used, input layer normalization weights tensor is omitted
if(lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_layer_norm_weights() != nullptr);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_layer_norm_weights());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_layer_norm_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_layer_norm_weights()->dimension(0) != num_batches);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, lstm_params.input_layer_norm_weights());
}
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.forget_layer_norm_weights(), lstm_params.cell_layer_norm_weights(), lstm_params.output_layer_norm_weights());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, lstm_params.forget_layer_norm_weights(), lstm_params.cell_layer_norm_weights(), lstm_params.output_layer_norm_weights());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.forget_layer_norm_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_layer_norm_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.output_layer_norm_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.forget_layer_norm_weights()->dimension(0) != num_batches);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_layer_norm_weights()->dimension(0) != num_batches);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.output_layer_norm_weights()->dimension(0) != num_batches);
}
// Check peephole optimization
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_output_weights(), lstm_params.cell_to_forget_weights());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_output_weights()->num_dimensions() > 1);
}
TensorShape units_out_transposed_shape = compute_transposed_shape(*recurrent_to_output_weights);
TensorShape num_units_transposed_shape = compute_transposed_shape(*forget_gate_bias);
const TensorInfo units_out_transposed_info = TensorInfo(units_out_transposed_shape, 1, input->data_type());
const TensorInfo num_units_transposed_info = TensorInfo(num_units_transposed_shape, 1, input->data_type());
TensorInfo input_gate = TensorInfo(TensorShape(num_cells, num_batches), 1, input->data_type());
TensorInfo forget_gate = TensorInfo(TensorShape(num_cells, num_batches), 1, input->data_type());
TensorInfo output_gate_tmp = TensorInfo(TensorShape(num_cells, num_batches), 1, input->data_type());
TensorInfo cell_state_tmp = TensorInfo(TensorShape(num_cells, num_batches), 1, input->data_type());
std::vector<const ITensorInfo *> inputs_vector;
inputs_vector.emplace_back(input);
inputs_vector.emplace_back(output_state_in);
const TensorShape concat_shape = arm_compute::misc::shape_calculator::calculate_concatenate_shape(inputs_vector, 0);
TensorInfo forget_gate_concat = TensorInfo(concat_shape, 1, input->data_type());
ARM_COMPUTE_RETURN_ON_ERROR(NEConcatenateLayer::validate(inputs_vector, &forget_gate_concat, Window::DimX));
// Validate forget gate
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayer::validate(input, input_to_forget_weights, (lstm_params.use_layer_norm()) ? nullptr : forget_gate_bias, &forget_gate));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(cell_state_in, lstm_params.cell_to_forget_weights(), &forget_gate, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&forget_gate, &forget_gate, &forget_gate, ConvertPolicy::SATURATE));
}
if(lstm_params.use_layer_norm())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEMeanStdDevNormalizationLayer::validate(&forget_gate));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&forget_gate, lstm_params.forget_layer_norm_weights(), &forget_gate, 1, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&forget_gate, forget_gate_bias, &forget_gate, ConvertPolicy::SATURATE));
}
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(&forget_gate, &forget_gate, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Validate input gate
if(!lstm_params.has_cifg_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(),
lstm_params.recurrent_to_input_weights(),
lstm_params.input_gate_bias());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_to_input_weights()->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.recurrent_to_input_weights()->num_dimensions() > 2);
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_gate_bias()->num_dimensions() > 1);
std::vector<const ITensorInfo *> lstm_weights;
lstm_weights.emplace_back(lstm_params.input_to_input_weights());
lstm_weights.emplace_back(lstm_params.recurrent_to_input_weights());
TensorShape lstm_weights_concat_shape = arm_compute::misc::shape_calculator::calculate_concatenate_shape(lstm_weights, 0);
TensorInfo lstm_gate_concat = TensorInfo(lstm_weights_concat_shape, 1, input->data_type());
ARM_COMPUTE_RETURN_ON_ERROR(NEConcatenateLayer::validate(lstm_weights, &lstm_gate_concat, Window::DimX));
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayer::validate(input, lstm_params.input_to_input_weights(), (lstm_params.use_layer_norm()) ? nullptr : lstm_params.input_gate_bias(), &input_gate));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_input_weights());
ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_input_weights()->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(cell_state_in, lstm_params.cell_to_input_weights(), &input_gate, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&input_gate, &input_gate, &input_gate, ConvertPolicy::SATURATE));
}
if(lstm_params.use_layer_norm())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEMeanStdDevNormalizationLayer::validate(&input_gate));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&input_gate, lstm_params.input_layer_norm_weights(), &input_gate, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&input_gate, lstm_params.input_gate_bias(), &input_gate, ConvertPolicy::SATURATE));
}
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(&input_gate, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticSubtractionKernel::validate(&forget_gate, &forget_gate, &forget_gate, ConvertPolicy::SATURATE));
}
// Validate cell state
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayer::validate(input, input_to_cell_weights, (lstm_params.use_layer_norm()) ? nullptr : cell_bias, &cell_state_tmp));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMM::validate(output_state_in, &units_out_transposed_info, nullptr, &cell_state_tmp, 1.f, 0.f, GEMMInfo()));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&cell_state_tmp, &cell_state_tmp, &cell_state_tmp, ConvertPolicy::SATURATE));
if(lstm_params.use_layer_norm())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEMeanStdDevNormalizationLayer::validate(&cell_state_tmp));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&cell_state_tmp, lstm_params.cell_layer_norm_weights(), &cell_state_tmp, 1, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&cell_state_tmp, cell_bias, &cell_state_tmp, ConvertPolicy::SATURATE));
}
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(&cell_state_tmp, nullptr, activation_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&cell_state_tmp, &input_gate, &cell_state_tmp, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&cell_state_tmp, &forget_gate, &cell_state_tmp, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&cell_state_tmp, &cell_state_tmp, &cell_state_tmp, ConvertPolicy::SATURATE));
if(cell_threshold != 0.f)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(&cell_state_tmp, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -cell_threshold,
cell_threshold)));
}
// Validate output gate tmp
std::vector<const ITensorInfo *> in_out_weights;
in_out_weights.emplace_back(input_to_output_weights);
in_out_weights.emplace_back(recurrent_to_output_weights);
TensorShape in_out_weights_concat_shape = arm_compute::misc::shape_calculator::calculate_concatenate_shape(in_out_weights, 0);
TensorInfo in_out_gate_concat = TensorInfo(in_out_weights_concat_shape, 1, input->data_type());
ARM_COMPUTE_RETURN_ON_ERROR(NEConcatenateLayer::validate(in_out_weights, &in_out_gate_concat, Window::DimX));
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayer::validate(input, input_to_output_weights, (lstm_params.use_layer_norm()) ? nullptr : output_gate_bias, &output_gate_tmp));
if(lstm_params.has_peephole_opt())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&cell_state_tmp, lstm_params.cell_to_output_weights(), &output_gate_tmp, 1, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&output_gate_tmp, &output_gate_tmp, &output_gate_tmp, ConvertPolicy::SATURATE));
}
if(lstm_params.use_layer_norm())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEMeanStdDevNormalizationLayer::validate(&output_gate_tmp));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&output_gate_tmp, lstm_params.output_layer_norm_weights(), &output_gate_tmp, 1, ConvertPolicy::SATURATE,
RoundingPolicy::TO_ZERO));
ARM_COMPUTE_RETURN_ON_ERROR(NEArithmeticAddition::validate(&output_gate_tmp, output_gate_bias, &output_gate_tmp, ConvertPolicy::SATURATE));
}
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(&output_gate_tmp, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
// Validate output state
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(&cell_state_tmp, &cell_state_tmp, activation_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEPixelWiseMultiplicationKernel::validate(&cell_state_tmp, &output_gate_tmp, &output_gate_tmp, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_ZERO));
if(lstm_params.has_projection())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayer::validate(&output_gate_tmp, lstm_params.projection_weights(), lstm_params.projection_bias(), output_state_out));
if(projection_threshold != 0.f)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayerKernel::validate(output_state_out, output_state_out,
ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -projection_threshold, projection_threshold)));
}
}
// Validate copy kernel
ARM_COMPUTE_RETURN_ON_ERROR(NECopyKernel::validate(&cell_state_tmp, cell_state_out));
ARM_COMPUTE_RETURN_ON_ERROR(NECopyKernel::validate(output_state_out, output));
// Validate scratch concatenation
std::vector<ITensorInfo *> inputs_vector_info_raw;
if(!lstm_params.has_cifg_opt())
{
inputs_vector_info_raw.push_back(&input_gate);
}
inputs_vector_info_raw.push_back(&cell_state_tmp);
inputs_vector_info_raw.push_back(&forget_gate);
inputs_vector_info_raw.push_back(&output_gate_tmp);
ARM_COMPUTE_RETURN_ON_ERROR(NEConcatenateLayer::validate(inputs_vector_info_raw, scratch_buffer, Window::DimX));
return Status{};
}
void NELSTMLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
_concat_inputs_forget_gate.run();
_fully_connected_forget_gate.run();
if(_run_peephole_opt)
{
NEScheduler::get().schedule(&_pixelwise_mul_forget_gate, Window::DimY);
_accum_forget_gate1.run();
}
if(_is_layer_norm_lstm)
{
_mean_std_norm_forget_gate.run();
NEScheduler::get().schedule(&_pixelwise_mul_forget_gate_coeff, Window::DimY);
NEScheduler::get().schedule(&_accum_forget_gate_bias, Window::DimY);
}
NEScheduler::get().schedule(&_activation_forget_gate, Window::DimY);
if(_run_cifg_opt)
{
if(_ones.info()->data_type() == DataType::F16)
{
std::fill_n(reinterpret_cast<half *>(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 1);
}
else
{
std::fill_n(reinterpret_cast<float *>(_ones.buffer()), _ones.info()->total_size() / _ones.info()->element_size(), 1);
}
NEScheduler::get().schedule(&_subtract_input_gate, Window::DimY);
}
else
{
_fully_connected_input_gate.run();
if(_run_peephole_opt)
{
NEScheduler::get().schedule(&_pixelwise_mul_input_gate, Window::DimY);
_accum_input_gate1.run();
}
if(_is_layer_norm_lstm)
{
_mean_std_norm_input_gate.run();
NEScheduler::get().schedule(&_pixelwise_mul_input_gate_coeff, Window::DimY);
NEScheduler::get().schedule(&_accum_input_gate_bias, Window::DimY);
}
NEScheduler::get().schedule(&_activation_input_gate, Window::DimY);
}
_fully_connected_cell_state.run();
NEScheduler::get().schedule(&_transpose_cell_state, Window::DimY);
_gemm_cell_state1.run();
NEScheduler::get().schedule(&_accum_cell_state1, Window::DimY);
if(_is_layer_norm_lstm)
{
_mean_std_norm_cell_gate.run();
NEScheduler::get().schedule(&_pixelwise_mul_cell_gate_coeff, Window::DimY);
NEScheduler::get().schedule(&_accum_cell_gate_bias, Window::DimY);
}
NEScheduler::get().schedule(&_activation_cell_state, Window::DimY);
NEScheduler::get().schedule(&_pixelwise_mul_cell_state1, Window::DimY);
NEScheduler::get().schedule(&_pixelwise_mul_cell_state2, Window::DimY);
NEScheduler::get().schedule(&_accum_cell_state2, Window::DimY);
if(_perform_cell_clipping)
{
NEScheduler::get().schedule(&_cell_clip, Window::DimY);
}
_fully_connected_output.run();
if(_run_peephole_opt)
{
NEScheduler::get().schedule(&_pixelwise_mul_output_state1, Window::DimY);
_accum_output1.run();
}
if(_is_layer_norm_lstm)
{
_mean_std_norm_output_gate.run();
NEScheduler::get().schedule(&_pixelwise_mul_output_gate_coeff, Window::DimY);
NEScheduler::get().schedule(&_accum_output_gate_bias, Window::DimY);
}
NEScheduler::get().schedule(&_activation_output, Window::DimY);
NEScheduler::get().schedule(&_activation_output_state, Window::DimY);
NEScheduler::get().schedule(&_pixelwise_mul_output_state2, Window::DimY);
if(_has_projection_weights)
{
_fully_connected_output_state.run();
if(_perform_projection_clipping)
{
NEScheduler::get().schedule(&_projection_clip, Window::DimY);
}
}
NEScheduler::get().schedule(&_copy_cell_state, Window::DimY);
NEScheduler::get().schedule(&_copy_output, Window::DimY);
_concat_scratch_buffer.run();
}
void NELSTMLayer::prepare()
{
if(!_is_prepared)
{
_concat_weights_forget_gate.run();
if(!_run_cifg_opt)
{
_concat_weights_input_gate.run();
}
_concat_weights_output.run();
_is_prepared = true;
}
}