blob: a03ec108c62fadf3a8e2dc9bf653c43f093ae8d6 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEGEMMLowpMatrixMultiplyCore.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/NEON/kernels/NEGEMMInterleave4x4Kernel.h"
#include "arm_compute/core/NEON/kernels/NEGEMMLowpMatrixMultiplyKernel.h"
#include "arm_compute/core/NEON/kernels/NEGEMMTranspose1xWKernel.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "support/ToolchainSupport.h"
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
NEGEMMLowpMatrixMultiplyCore::NEGEMMLowpMatrixMultiplyCore(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _asm_glue(memory_manager), _mm_kernel(nullptr), _mtx_a_reshape_kernel(nullptr), _mtx_b_reshape_kernel(nullptr), _mtx_a_reduction_kernel(), _mtx_b_reduction_kernel(),
_offset_contribution_kernel(), _offset_contribution_output_stage_kernel(), _vector_sum_col(), _vector_sum_row(), _tmp_a(), _tmp_b(), _mm_result_s32(), _original_b(nullptr), _a_offset(0), _b_offset(0),
_run_vector_matrix_multiplication(false), _assembly_path(false), _fused_assembly_path(false), _reshape_b_only_on_first_run(false), _is_prepared(false), _fuse_output_stage(false)
{
}
void NEGEMMLowpMatrixMultiplyCore::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(a, b, output);
ARM_COMPUTE_UNUSED(c);
ARM_COMPUTE_ERROR_THROW_ON(NEGEMMLowpMatrixMultiplyCore::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, output->info(), gemm_info));
const ITensor *matrix_a = a;
const ITensor *matrix_b = b;
// Clear state
_mtx_a_reshape_kernel = nullptr;
_mtx_b_reshape_kernel = nullptr;
// Set internal variables
_a_offset = a->info()->quantization_info().uniform().offset;
_b_offset = b->info()->quantization_info().uniform().offset;
_run_vector_matrix_multiplication = a->info()->dimension(1) < 2;
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_is_prepared = false;
_fused_assembly_path = false;
_original_b = b;
// If GEMMLowpOutputStage != NONE, fuse the offset contribution with the output stage
if(gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE)
{
_fuse_output_stage = true;
_memory_group.manage(&_mm_result_s32);
TensorInfo info_mm_result_s32(output->info()->tensor_shape(), 1, DataType::S32);
_mm_result_s32.allocator()->init(info_mm_result_s32);
}
#ifdef __aarch64__
switch(a->info()->data_type())
{
case DataType::QASYMM8:
case DataType::U8:
case DataType::S8:
{
if(a->info()->data_type() == DataType::QASYMM8 && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::QUANTIZE_DOWN_FIXEDPOINT)
{
_asm_glue.configure(a, b, c, output, 1.f, 0.f, gemm_info);
_fused_assembly_path = _asm_glue.is_configured();
}
else
{
_asm_glue.configure(a, b, nullptr, _fuse_output_stage ? &_mm_result_s32 : output, 1.f, 0.f, gemm_info);
}
_assembly_path = _asm_glue.is_configured();
break;
}
default:
{
ARM_COMPUTE_ERROR("Datatype not supported");
break;
}
}
#endif /* __aarch64__ */
if(!(_assembly_path || _run_vector_matrix_multiplication))
{
matrix_a = &_tmp_a;
matrix_b = &_tmp_b;
// The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
TensorInfo a_info(compute_interleaved_shape(*a->info()), 1, a->info()->data_type(), a->info()->quantization_info());
// The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
TensorInfo b_info(compute_transpose1xW_shape(*b->info()), 1, b->info()->data_type(), b->info()->quantization_info());
_tmp_a.allocator()->init(a_info);
_tmp_b.allocator()->init(b_info);
_memory_group.manage(&_tmp_a);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
// Configure interleave kernel
{
auto k = arm_compute::support::cpp14::make_unique<NEGEMMInterleave4x4Kernel>();
k->configure(a, &_tmp_a);
_mtx_a_reshape_kernel = std::move(k);
}
// Configure transpose kernel
{
auto k = arm_compute::support::cpp14::make_unique<NEGEMMTranspose1xWKernel>();
k->configure(b, &_tmp_b);
_mtx_b_reshape_kernel = std::move(k);
}
}
if(!_fused_assembly_path)
{
// Initialize matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0)
{
TensorInfo info_vector_sum_col(compute_reductionA_shape(*b->info()), 1, DataType::S32);
_vector_sum_col.allocator()->init(info_vector_sum_col);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_vector_sum_col);
}
// Configure Matrix B reduction kernel
_mtx_b_reduction_kernel.configure(b, &_vector_sum_col, a->info()->dimension(0), false);
}
// Initialize Matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
TensorInfo info_vector_sum_row(compute_reductionB_shape(*a->info()), 1, DataType::S32);
_vector_sum_row.allocator()->init(info_vector_sum_row);
_memory_group.manage(&_vector_sum_row);
// Configure matrix A reduction kernel
_mtx_a_reduction_kernel.configure(a, &_vector_sum_row, a->info()->dimension(0), false);
}
if(_fuse_output_stage)
{
// Configure matrix multiply kernel
if(!_assembly_path)
{
auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixMultiplyKernel>();
k->configure(matrix_a, matrix_b, &_mm_result_s32);
_mm_kernel = std::move(k);
}
_offset_contribution_output_stage_kernel.configure(&_mm_result_s32, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, c, output, a->info()->dimension(0),
_a_offset, _b_offset, gemm_info.gemmlowp_output_stage());
}
else
{
// Configure matrix multiply kernel
if(!_assembly_path)
{
auto k = arm_compute::support::cpp14::make_unique<NEGEMMLowpMatrixMultiplyKernel>();
k->configure(matrix_a, matrix_b, output);
_mm_kernel = std::move(k);
}
// Configure offset contribution kernel
_offset_contribution_kernel.configure(output, _a_offset == 0 ? nullptr : &_vector_sum_col, _b_offset == 0 ? nullptr : &_vector_sum_row, a->info()->dimension(0), _a_offset, _b_offset);
}
}
// Allocate tensors
if(!_assembly_path && !_run_vector_matrix_multiplication)
{
_tmp_a.allocator()->allocate();
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
}
if(!_fused_assembly_path)
{
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
}
if(_b_offset != 0)
{
_vector_sum_row.allocator()->allocate();
}
}
if(_fuse_output_stage)
{
_mm_result_s32.allocator()->allocate();
}
}
Status NEGEMMLowpMatrixMultiplyCore::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::S32, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(c != nullptr && gemm_info.gemmlowp_output_stage().type == GEMMLowpOutputStageType::NONE, "Bias addition not supported in NEGEMMLowpMatrixMultiplyCore for output S32");
ARM_COMPUTE_RETURN_ERROR_ON_MSG((a)->dimension(0) != (b)->dimension(1),
"The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
const ITensorInfo *matrix_a_info = a;
const ITensorInfo *matrix_b_info = b;
TensorInfo tmp_a_info{};
TensorInfo tmp_b_info{};
TensorInfo mm_result_s32_info{};
int32_t a_offset = a->quantization_info().uniform().offset;
int32_t b_offset = b->quantization_info().uniform().offset;
bool fuse_output_stage = gemm_info.gemmlowp_output_stage().type != GEMMLowpOutputStageType::NONE;
if(fuse_output_stage)
{
auto_init_if_empty(mm_result_s32_info, a->clone()->set_tensor_shape(output->tensor_shape()).set_data_type(DataType::S32));
}
// Check if we need to run the optimized assembly kernel
bool run_optimised = false;
bool run_optimised_requantized = false;
if(is_data_type_quantized_asymmetric(a->data_type()))
{
run_optimised = bool(NEGEMMAssemblyDispatch::validate(a, b, c, output, 1.f, 0.f, gemm_info));
run_optimised_requantized = run_optimised;
}
else
{
run_optimised = bool(NEGEMMAssemblyDispatch::validate(a, b, nullptr, fuse_output_stage ? &mm_result_s32_info : output, 1.f, 0.f, gemm_info));
}
if(run_optimised)
{
ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0));
if(gemm_info.depth_output_gemm3d() != 0)
{
if(gemm_info.reinterpret_input_as_3d())
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "NEGEMM cannot reinterpret the input tensor as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0, "NEGEMM cannot reinterpret the output tensor as 3D");
const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
if(!run_vector_matrix_multiplication)
{
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
// The interleaved output matrix will have the following shape: [ a_height * 4, ceil(a_width / 4.0f) ]
TensorShape shape_tmp_a = a->tensor_shape();
shape_tmp_a.set(0, a->dimension(0) * 4);
shape_tmp_a.set(1, std::ceil(a->dimension(1) / 4.f));
// The transpose1xW output matrix will have the following shape: [ b_height * 16, ceil(b_width / 16.0f) ]
TensorShape shape_tmp_b = b->tensor_shape();
shape_tmp_b.set(0, b->dimension(1) * 16);
shape_tmp_b.set(1, std::ceil(b->dimension(0) / 16.f));
// Validate interleave kernel
auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(shape_tmp_a));
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(shape_tmp_b));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(a, &tmp_a_info));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(b, &tmp_b_info));
}
}
if(!run_optimised_requantized)
{
TensorInfo info_vector_sum_col{};
TensorInfo info_vector_sum_row{};
// Validate matrix B reduction kernel only if _a_offset is not equal to 0
if(a_offset != 0)
{
info_vector_sum_col = TensorInfo(compute_reductionA_shape(*b), 1, DataType::S32);
// Configure Matrix B reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixBReductionKernel::validate(b, &info_vector_sum_col, a->dimension(0), false));
}
// Validate Matrix A reduction kernel only if _b_offset is not equal to 0
if(b_offset != 0)
{
info_vector_sum_row = TensorInfo(compute_reductionB_shape(*a), 1, DataType::S32);
// Configure matrix A reduction kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixAReductionKernel::validate(a, &info_vector_sum_row, a->dimension(0), false));
}
if(fuse_output_stage)
{
if(!run_optimised)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &mm_result_s32_info));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionOutputStageKernel::validate(&mm_result_s32_info,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
c, output, a_offset, b_offset,
gemm_info.gemmlowp_output_stage()));
}
else
{
if(!run_optimised)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, output));
}
// Validate offset contribution kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpOffsetContributionKernel::validate(output,
a_offset == 0 ? nullptr : &info_vector_sum_col,
b_offset == 0 ? nullptr : &info_vector_sum_row,
a_offset, b_offset));
}
}
return Status{};
}
void NEGEMMLowpMatrixMultiplyCore::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Reshape inputs
if(_mtx_a_reshape_kernel)
{
NEScheduler::get().schedule(_mtx_a_reshape_kernel.get(), Window::DimY);
}
if(_mtx_b_reshape_kernel && !_reshape_b_only_on_first_run)
{
NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY);
}
// Run GEMM
if(_asm_glue.is_configured())
{
_asm_glue.run();
}
else
{
NEScheduler::get().schedule(_mm_kernel.get(), Window::DimY);
}
if(!_fused_assembly_path)
{
// Run matrix A reduction kernel only if _b_offset is not equal to 0
if(_b_offset != 0)
{
NEScheduler::get().schedule(&_mtx_a_reduction_kernel, Window::DimX);
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && !_reshape_b_only_on_first_run)
{
NEScheduler::get().schedule(&_mtx_b_reduction_kernel, Window::DimX);
}
if(_fuse_output_stage)
{
// Run offset contribution kernel
NEScheduler::get().schedule(&_offset_contribution_output_stage_kernel, Window::DimY);
}
else
{
// Run offset contribution kernel
NEScheduler::get().schedule(&_offset_contribution_kernel, Window::DimY);
}
}
}
void NEGEMMLowpMatrixMultiplyCore::prepare()
{
if(!_is_prepared)
{
// Run assembly reshape
if(_asm_glue.is_configured() && _reshape_b_only_on_first_run)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
_asm_glue.prepare();
_original_b->mark_as_unused();
}
// Run non-assembly reshape
else if(_mtx_b_reshape_kernel && _reshape_b_only_on_first_run)
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
// Run reshape kernel and mark original weights tensor as unused
_tmp_b.allocator()->allocate();
NEScheduler::get().schedule(_mtx_b_reshape_kernel.get(), Window::DimY);
_original_b->mark_as_unused();
}
// Run matrix B reduction kernel only if _a_offset is not equal to 0
if(_a_offset != 0 && _reshape_b_only_on_first_run)
{
_vector_sum_col.allocator()->allocate();
NEScheduler::get().schedule(&_mtx_b_reduction_kernel, Window::DimX);
}
_is_prepared = true;
}
}