blob: 37d0e09fc9ed8589c7e3817001de8d8956602ea7 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEGEMM.h"
#include "arm_compute/core/CPP/Validate.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/TensorInfo.h"
#include "arm_compute/core/Types.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "arm_compute/runtime/NEON/functions/NEGEMMAssemblyDispatch.h"
#include "arm_compute/runtime/TensorAllocator.h"
#include "support/ToolchainSupport.h"
#include <cmath>
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
NEGEMM::NEGEMM(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _interleave_kernel(), _transpose_kernel(), _mm_kernel(), _asm_glue(memory_manager), _ma_kernel(), _tmp_a(), _tmp_b(), _original_b(nullptr),
_run_vector_matrix_multiplication(false), _run_addition(false), _reshape_b_only_on_first_run(false), _is_prepared(false)
{
}
void NEGEMM::configure(const ITensor *a, const ITensor *b, const ITensor *c, ITensor *d, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_ERROR_THROW_ON(NEGEMM::validate(a->info(), b->info(), (c != nullptr) ? c->info() : nullptr, d->info(), alpha, beta, gemm_info));
// Check if we need to reshape the matrix B only on the first run
_is_prepared = false;
_reshape_b_only_on_first_run = gemm_info.reshape_b_only_on_first_run();
_run_vector_matrix_multiplication = a->info()->dimension(1) < 2;
_original_b = b;
bool run_optimised = c == nullptr && bool(NEGEMMAssemblyDispatch::validate(a->info(), b->info(), c != nullptr ? c->info() : nullptr, d->info(), alpha, beta, gemm_info));
if(run_optimised)
{
if(MEMInfo::get_policy() == MemoryPolicy::MINIMIZE)
{
GEMMInfo gemm_info_ntb = gemm_info;
gemm_info_ntb.set_pretranpose_B(false);
_asm_glue.configure(a, b, c, d, alpha, beta, gemm_info_ntb);
}
else
{
_asm_glue.configure(a, b, c, d, alpha, beta, gemm_info);
}
ARM_COMPUTE_ERROR_ON(!_asm_glue.is_configured());
}
else
{
if(_run_vector_matrix_multiplication)
{
// Configure the matrix multiply kernel
_mm_kernel.configure(a, b, d, alpha, false);
}
else
{
TensorShape shape_tmp_a = a->info()->tensor_shape();
TensorShape shape_tmp_b = b->info()->tensor_shape();
shape_tmp_a.set(0, a->info()->dimension(0) * 4);
shape_tmp_a.set(1, std::ceil(a->info()->dimension(1) / 4.0f));
const unsigned int transpose_w = 16 / data_size_from_type(b->info()->data_type());
shape_tmp_b.set(0, b->info()->dimension(1) * transpose_w);
shape_tmp_b.set(1, std::ceil(b->info()->dimension(0) / static_cast<float>(transpose_w)));
TensorInfo info_a = a->info()->clone()->set_tensor_shape(shape_tmp_a).set_is_resizable(true);
TensorInfo info_b = b->info()->clone()->set_tensor_shape(shape_tmp_b).set_is_resizable(true);
_tmp_a.allocator()->init(info_a);
_tmp_b.allocator()->init(info_b);
// Manage intermediate buffers
_memory_group.manage(&_tmp_a);
if(!_reshape_b_only_on_first_run)
{
_memory_group.manage(&_tmp_b);
}
int m = a->info()->dimension(1);
int n = b->info()->dimension(0);
int k = a->info()->dimension(0);
// Configure interleave kernel
_interleave_kernel.configure(a, &_tmp_a);
// Configure transpose kernel
_transpose_kernel.configure(b, &_tmp_b);
// Configure matrix multiplication kernel
_mm_kernel.configure(&_tmp_a, &_tmp_b, d, alpha, true, GEMMReshapeInfo(m, n, k));
// Allocate once the all configure methods have been called
_tmp_a.allocator()->allocate();
if(!_reshape_b_only_on_first_run)
{
_tmp_b.allocator()->allocate();
}
}
// Configure matrix addition kernel
if(beta != 0 && c != nullptr)
{
_ma_kernel.configure(c, d, beta);
_run_addition = true;
}
}
}
Status NEGEMM::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *c, const ITensorInfo *output, float alpha, float beta, const GEMMInfo &gemm_info)
{
ARM_COMPUTE_UNUSED(alpha);
ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b, output);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(0) != b->dimension(1), "The product AB is defined only if the number of columns in A is equal to the number of rows in B");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_a_reshaped(), "Matrix A already reshaped is not supported");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.is_b_reshaped(), "Matrix B already reshaped is not supported");
if(c != nullptr)
{
ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.depth_output_gemm3d() != 0);
ARM_COMPUTE_RETURN_ERROR_ON(gemm_info.reinterpret_input_as_3d());
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, c);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->dimension(1) != c->dimension(1), "The C matrix must have the same number of rows as the matrix A");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(b->dimension(0) != c->dimension(0), "The C matrix must have the same number of columns as the matrix B");
}
if(output->total_size() != 0)
{
ARM_COMPUTE_RETURN_ERROR_ON(b->dimension(0) != output->dimension(0));
if(gemm_info.depth_output_gemm3d() != 0)
{
if(gemm_info.reinterpret_input_as_3d())
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(2) != output->dimension(2));
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1) * output->dimension(2));
}
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON(a->dimension(1) != output->dimension(1));
}
}
// Check if we need to run the optimized assembly kernel
const bool run_optimised = c == nullptr && bool(NEGEMMAssemblyDispatch::validate(a, b, c, output, alpha, beta, gemm_info));
if(!run_optimised)
{
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.reinterpret_input_as_3d(), "NEGEMM cannot reinterpret the input tensor as 3D");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(gemm_info.depth_output_gemm3d() != 0, "NEGEMM cannot reinterpret the output tensor as 3D");
// Check if the first input tensor is a vector.
const bool run_vector_matrix_multiplication = a->dimension(1) < 2;
// Check if we need to reshape the matrix A and matrix B
const bool run_interleave_transpose = !run_vector_matrix_multiplication && !(gemm_info.reshape_b_only_on_first_run());
// Arguments used by GEMMReshapeInfo
// If we pass the matrix A and matrix B reshaped to NEGEMMMatrixMultiplyKernel, we need to pass m, n, k, mult_transpose1xW_width and mult_interleave4x4_height to NEGEMMReshapeInfo
// in order to know how the matrices have been reshaped
const int m = a->dimension(1);
const int n = b->dimension(0);
const int k = a->dimension(0);
int mult_transpose1xW_width = 1;
int mult_interleave4x4_height = 1;
const GEMMReshapeInfo reshape_info = GEMMReshapeInfo(m, n, k, mult_transpose1xW_width, mult_interleave4x4_height, gemm_info.depth_output_gemm3d());
const ITensorInfo *matrix_a_info = a;
const ITensorInfo *matrix_b_info = b;
TensorInfo tmp_a_info{};
TensorInfo tmp_b_info{};
TensorInfo tmp_output_info = *output->clone();
if(run_interleave_transpose)
{
matrix_a_info = &tmp_a_info;
matrix_b_info = &tmp_b_info;
// Validate interleave kernel
auto_init_if_empty(tmp_a_info, a->clone()->set_tensor_shape(compute_interleaved_shape(*a, mult_interleave4x4_height, gemm_info.reinterpret_input_as_3d())));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMInterleave4x4Kernel::validate(a, &tmp_a_info));
// Validate transpose kernel
auto_init_if_empty(tmp_b_info, b->clone()->set_tensor_shape(compute_transpose1xW_with_element_size_shape(*b, mult_transpose1xW_width)));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMTranspose1xWKernel::validate(b, &tmp_b_info));
}
// Validate matrix multiply
auto_init_if_empty(tmp_output_info, matrix_a_info->clone()->set_tensor_shape(compute_mm_shape(*matrix_a_info, *matrix_b_info, run_interleave_transpose, reshape_info)));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixMultiplyKernel::validate(matrix_a_info, matrix_b_info, &tmp_output_info, alpha, run_interleave_transpose, reshape_info));
}
// Validate matrix addition kernel
if(beta != 0 && c != nullptr)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixAdditionKernel::validate(c, output, beta));
}
return Status{};
}
void NEGEMM::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
if(_asm_glue.is_configured())
{
_asm_glue.run();
}
else
{
if(!_run_vector_matrix_multiplication)
{
// Run interleave kernel
NEScheduler::get().schedule(&_interleave_kernel, Window::DimY);
if(!_reshape_b_only_on_first_run)
{
// Run transpose kernel
NEScheduler::get().schedule(&_transpose_kernel, Window::DimY);
}
}
NEScheduler::get().schedule(&_mm_kernel, _run_vector_matrix_multiplication ? Window::DimX : Window::DimY);
// Run matrix addition kernel
if(_run_addition)
{
NEScheduler::get().schedule(&_ma_kernel, Window::DimY);
}
}
}
void NEGEMM::prepare()
{
if(!_is_prepared)
{
if(_asm_glue.is_configured())
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
_asm_glue.prepare();
}
else if(_reshape_b_only_on_first_run && !_run_vector_matrix_multiplication && !_asm_glue.is_configured())
{
ARM_COMPUTE_ERROR_ON(!_original_b->is_used());
_tmp_b.allocator()->allocate();
NEScheduler::get().schedule(&_transpose_kernel, Window::DimY);
_original_b->mark_as_unused();
}
_is_prepared = true;
}
}
} // namespace arm_compute