blob: 12a5a1d724353b362a51b04be11d45072aa98294 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEFullyConnectedLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Size2D.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include <algorithm>
#include <cmath>
using namespace arm_compute;
using namespace arm_compute::misc::shape_calculator;
namespace
{
Status validate_mm(const ITensorInfo &input, const ITensorInfo &weights, const ITensorInfo &output)
{
if(is_data_type_quantized_asymmetric(input.data_type()))
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info(input.quantization_info().uniform().scale, -input.quantization_info().uniform().offset);
const QuantizationInfo weights_quantization_info(weights.quantization_info().uniform().scale, -weights.quantization_info().uniform().offset);
// Validate gemmlowp function
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpMatrixMultiplyCore::validate(&input.clone()->set_quantization_info(input_quantization_info),
&weights.clone()->set_quantization_info(weights_quantization_info),
nullptr,
&output));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMM::validate(&input, &weights, nullptr, &output, 1.f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */)));
}
return Status{};
}
} // namespace
void NEFullyConnectedLayerReshapeWeights::configure(const ITensor *input, ITensor *output)
{
auto k = arm_compute::support::cpp14::make_unique<NETransposeKernel>();
k->configure(input, output);
_kernel = std::move(k);
}
Status NEFullyConnectedLayerReshapeWeights::validate(const ITensorInfo *input, const ITensorInfo *output)
{
return NETransposeKernel::validate(input, output);
}
NEFullyConnectedLayer::NEFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(std::move(memory_manager)), _flatten_kernel(), _convert_weights(), _reshape_weights_function(), _mm_gemm(), _mm_gemmlowp(), _gemmlowp_output_stage(), _accumulate_biases_kernel(),
_flatten_output(), _gemmlowp_output(), _converted_weights_output(), _reshape_weights_output(), _original_weights(nullptr), _are_weights_converted(true), _are_weights_reshaped(false),
_is_fc_after_conv(false), _accumulate_biases(false), _is_quantized(false), _is_prepared(false)
{
}
void NEFullyConnectedLayer::configure_mm(const ITensor *input, const ITensor *weights, ITensor *output)
{
if(_is_quantized)
{
// Since we need negative offsets for computing convolution, we need to change QuantizationInfo()
// Extract and negate input and weights offset
const QuantizationInfo input_quantization_info = input->info()->quantization_info();
const QuantizationInfo weights_quantization_info = weights->info()->quantization_info();
input->info()->set_quantization_info(QuantizationInfo(input_quantization_info.uniform().scale, -input_quantization_info.uniform().offset));
weights->info()->set_quantization_info(QuantizationInfo(weights_quantization_info.uniform().scale, -weights_quantization_info.uniform().offset));
// Configure gemmlowp function
_mm_gemmlowp.configure(input, weights, nullptr, output);
// Revert back QuantizatioInfo as input and weights could be used in other fully connected layers
input->info()->set_quantization_info(input_quantization_info);
weights->info()->set_quantization_info(weights_quantization_info);
}
else
{
// Configure matrix multiply kernel
_mm_gemm.configure(input, weights, nullptr, output, 1.f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run */));
}
}
void NEFullyConnectedLayer::configure_conv_fc(const ITensor *input, const ITensor *weights, ITensor *output)
{
ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
// If the fully connected layer is called after a convolution layer, the input tensor must be linearized
// Initialize output tensor for flatten
TensorShape shape_flatten = compute_flatten_shape(input->info());
_flatten_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_flatten));
// Configure flatten kernel
_memory_group.manage(&_flatten_output);
_flatten_kernel.configure(input, &_flatten_output);
// Configure matrix multiply kernel
configure_mm(&_flatten_output, weights, output);
// Allocate the output tensor for flatten once all the configure methods have been called
_flatten_output.allocator()->allocate();
}
void NEFullyConnectedLayer::configure_fc_fc(const ITensor *input, const ITensor *weights, ITensor *output)
{
ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
// Configure matrix multiply kernel
configure_mm(input, weights, output);
}
void NEFullyConnectedLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
// Perform validate step
ARM_COMPUTE_ERROR_THROW_ON(NEFullyConnectedLayer::validate(input->info(),
weights->info(),
biases != nullptr ? biases->info() : nullptr,
output->info(),
fc_info));
_are_weights_converted = true;
_are_weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
_is_fc_after_conv = true;
_accumulate_biases = false;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_original_weights = weights;
// Configure gemmlowp output
if(_is_quantized)
{
_gemmlowp_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
}
// Configure accumulate biases kernel for non quantized asymmetric types
if(biases != nullptr && !_is_quantized)
{
_accumulate_biases = true;
// Configure accumulate biases kernel
_accumulate_biases_kernel.configure(output, biases);
}
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensor *weights_to_use = weights;
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
if(is_batched_fc_layer)
{
_is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
input->info()->tensor_shape().cend(),
output->info()->tensor_shape().cbegin() + 1));
}
else
{
_is_fc_after_conv = input->info()->num_dimensions() > 1;
}
// Reshape weights if needed
if(!_are_weights_reshaped)
{
// Reshape the weights
_reshape_weights_function.configure(weights, &_reshape_weights_output);
weights_to_use = &_reshape_weights_output;
}
// Convert weights if needed
if(_is_fc_after_conv && (input->info()->data_layout() != fc_info.weights_trained_layout))
{
// Convert weights
_convert_weights.configure(weights_to_use,
&_converted_weights_output,
input->info()->tensor_shape(),
fc_info.weights_trained_layout);
weights_to_use = &_converted_weights_output;
_are_weights_converted = false;
}
ITensor *tmp_output = (_is_quantized) ? &_gemmlowp_output : output;
if(_is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
configure_conv_fc(input, weights_to_use, tmp_output);
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
configure_fc_fc(input, weights_to_use, tmp_output);
}
// Configure output stage for asymmetric quantized types
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_gemmlowp_output_stage.configure(&_gemmlowp_output, biases, output, output_multiplier, output_shift, oq_info.offset);
_gemmlowp_output.allocator()->allocate();
}
_are_weights_reshaped = _are_weights_reshaped || fc_info.retain_internal_weights;
}
Status NEFullyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output,
FullyConnectedLayerInfo fc_info)
{
ARM_COMPUTE_UNUSED(fc_info.retain_internal_weights);
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON(weights->num_dimensions() > 2);
bool weights_reshaped = fc_info.transpose_weights ? fc_info.are_weights_reshaped : true;
bool is_fc_after_conv = true;
bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const ITensorInfo &flatten_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_flatten_shape(input)));
const ITensorInfo &reshaped_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_transposed_shape(*weights)));
const ITensorInfo &converted_weights = weights_reshaped ? TensorInfo(weights->clone()->set_is_resizable(true).reset_padding()) : TensorInfo(*reshaped_weights.clone());
const ITensorInfo &gemmlowp_output = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
// Configure accumulate biases kernel for non quantized asymmetric types
if(biases != nullptr && !is_quantized)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixAccumulateBiasesKernel::validate(output, biases));
}
// With the Fully Connected layer we can have 4 different cases:
// 1) Convolution layer -> Fully Connected layer without batches
// 2) Fully Connected layer -> Fully Connected layer without batches
// 3) Convolution layer -> Fully Connected layer with batches
// 4) Fully Connected layer -> Fully Connected layer with batches
const ITensorInfo *input_to_use = input;
const ITensorInfo *weights_to_use = weights;
const ITensorInfo *tmp_output = (is_quantized) ? &gemmlowp_output : output;
// Check if we have a fully connected layer with batches
const bool is_batched_fc_layer = output->dimension(1) > 1;
if(is_batched_fc_layer)
{
is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->tensor_shape().cbegin() + 3,
input->tensor_shape().cend(),
output->tensor_shape().cbegin() + 1));
}
else
{
is_fc_after_conv = input->num_dimensions() > 1;
}
if(!weights_reshaped)
{
// Validate reshape weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEFullyConnectedLayerReshapeWeights::validate(weights, &reshaped_weights));
weights_to_use = &reshaped_weights;
}
if(is_fc_after_conv && (input->data_layout() != fc_info.weights_trained_layout))
{
// Validate convert weights kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEConvertFullyConnectedWeights::validate(weights_to_use,
&converted_weights,
input->tensor_shape(),
fc_info.weights_trained_layout));
weights_to_use = &converted_weights;
}
if(is_fc_after_conv)
{
// Fully Connected layer after a Convolution Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON((weights_to_use->dimension(1) != (input->dimension(0) * input->dimension(1) * input->dimension(2))));
// Validate flatten kernel
ARM_COMPUTE_RETURN_ON_ERROR(NEFlattenLayerKernel::validate(input, &flatten_input));
input_to_use = &flatten_input;
}
else
{
// Fully Connected layer after a Fully Connected Layer without batches
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(0) != weights_to_use->dimension(1));
}
// Validate matrix multiply kernel
ARM_COMPUTE_RETURN_ON_ERROR(validate_mm(*input_to_use, *weights_to_use, *tmp_output));
// Validate output stage for asymmetric quantized types
if(is_quantized)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
const float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
ARM_COMPUTE_UNUSED(multiplier);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f);
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&gemmlowp_output, biases, output));
}
return Status{};
}
void NEFullyConnectedLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Linearize input if it comes from a convolutional layer
if(_is_fc_after_conv)
{
NEScheduler::get().schedule(&_flatten_kernel, Window::DimY);
}
// Run matrix multiply
if(_is_quantized)
{
_mm_gemmlowp.run();
}
else
{
_mm_gemm.run();
}
// Accumulate biases if provided
if(_is_quantized)
{
_gemmlowp_output_stage.run();
}
else
{
if(_accumulate_biases)
{
NEScheduler::get().schedule(&_accumulate_biases_kernel, Window::DimY);
}
}
}
void NEFullyConnectedLayer::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
auto release_unused = [](Tensor * w)
{
if(!w->is_used())
{
w->allocator()->free();
}
};
// Pointer to current weights
const ITensor *cur_weights = _original_weights;
// Reshape of the weights (happens only once)
if(!_are_weights_reshaped)
{
// Run reshape weights kernel and mark weights as unused
_reshape_weights_output.allocator()->allocate();
_reshape_weights_function.run();
cur_weights->mark_as_unused();
cur_weights = &_reshape_weights_output;
_are_weights_reshaped = true;
}
// Convert weights if needed (happens only once)
if(!_are_weights_converted)
{
_converted_weights_output.allocator()->allocate();
_convert_weights.run();
cur_weights->mark_as_unused();
_are_weights_converted = true;
}
// Release reshaped weights if unused
release_unused(&_reshape_weights_output);
// Prepare GEMM prepare and release unused weights
if(!_is_quantized)
{
_mm_gemm.prepare();
}
// Release converted weights if unused
release_unused(&_reshape_weights_output);
release_unused(&_converted_weights_output);
_is_prepared = true;
}
}