blob: fbdee8447483a741808a15edf028e1210f1952e5 [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/ITensor.h"
#include "arm_compute/core/PixelValue.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
#include "support/ToolchainSupport.h"
#include "arm_compute/core/utils/misc/InfoHelpers.h"
using namespace arm_compute::misc;
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
NEDepthwiseConvolutionLayer3x3::NEDepthwiseConvolutionLayer3x3(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _dwc_kernel(), _dwc_optimized_func(memory_manager), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(),
_activationlayer_function(), _accumulator(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _has_bias(false), _is_quantized(false), _is_optimized(false),
_is_nchw(true), _permute(false), _is_activationlayer_enabled(false), _is_prepared(false)
{
}
void NEDepthwiseConvolutionLayer3x3::configure_generic(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_UNUSED(act_info);
PixelValue zero_value(0.f);
// Initialize the intermediate accumulator tensor in case of quantized input
if(_is_quantized)
{
TensorShape accum_shape = output->info()->tensor_shape();
DataLayout accum_layout = output->info()->data_layout();
if(!_is_nchw)
{
permute(accum_shape, PermutationVector(1U, 2U, 0U));
accum_layout = DataLayout::NCHW;
}
_memory_group.manage(&_accumulator);
_accumulator.allocator()->init(TensorInfo(accum_shape, 1, DataType::S32, output->info()->quantization_info()));
_accumulator.info()->set_data_layout(accum_layout);
zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().uniform().offset));
}
if(!_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from HWI -> IHW
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
// Configure depthwise
_dwc_kernel.configure(&_permuted_input, &_permuted_weights, (_is_quantized) ? &_accumulator : &_permuted_output, conv_info, depth_multiplier, dilation);
// Configure border handler
_border_handler.configure(&_permuted_input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
// Allocate tensors
_permuted_input.allocator()->allocate();
}
else
{
// Configure depthwise convolution kernel
_dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier, dilation);
// Configure border handler
_border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
}
// Configure biases accumulation
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = (output->info()->total_size() == 0) ? iq_info : output->info()->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_output_stage_kernel.configure(&_accumulator, biases, _is_nchw ? output : &_permuted_output, output_multiplier, output_shift, oq_info.offset);
_accumulator.allocator()->allocate();
}
else if(_has_bias)
{
_output_stage_kernel.configure(_is_nchw ? output : &_permuted_output, biases);
}
// Permute output
if(!_is_nchw)
{
// Configure the function to transform the convoluted output to NHWC
_permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
_permuted_output.allocator()->allocate();
}
}
void NEDepthwiseConvolutionLayer3x3::configure_optimized(const ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info)
{
ActivationLayerInfo act_info_to_use = ActivationLayerInfo();
const bool is_relu = arm_compute::utils::info_helpers::is_relu(act_info);
const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info);
_is_activationlayer_enabled = act_info.enabled() && !(is_relu || is_relu6);
if(!_is_activationlayer_enabled)
{
act_info_to_use = act_info;
}
if(_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NCHW -> NHWC
_permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
_permuted_input.info()->set_data_layout(DataLayout::NHWC);
// Configure the function to transform the weights tensor from IHW -> HWI
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
_permuted_weights.info()->set_data_layout(DataLayout::NHWC);
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
// Configure optimized depthwise
_dwc_optimized_func.configure(&_permuted_input, &_permuted_weights, biases, &_permuted_output, conv_info, depth_multiplier, act_info_to_use);
// Configure the function to transform the convoluted output to ACL's native ordering format NCHW
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U));
// Allocate tensors
_permuted_input.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
else
{
_dwc_optimized_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info_to_use);
}
}
void NEDepthwiseConvolutionLayer3x3::configure(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(NEDepthwiseConvolutionLayer3x3::validate(input->info(), weights->info(), (biases == nullptr) ? nullptr : biases->info(),
output->info(), conv_info, depth_multiplier, act_info, dilation));
_original_weights = weights;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_has_bias = biases != nullptr;
_is_optimized = NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input->info(),
weights->info(),
conv_info,
depth_multiplier, dilation);
_is_nchw = input->info()->data_layout() == DataLayout::NCHW;
_permute = _is_optimized == _is_nchw;
_is_prepared = false;
_is_activationlayer_enabled = act_info.enabled();
// Configure appropriate pipeline
if(_is_optimized)
{
configure_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info);
}
else
{
configure_generic(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
// Configure activation
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
Status NEDepthwiseConvolutionLayer3x3::validate(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1);
const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());
if(biases != nullptr)
{
const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(channel_idx));
}
if(!NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input, weights, conv_info, depth_multiplier, dilation))
{
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
TensorInfo accumulator = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, is_quantized ? &accumulator : output, conv_info, depth_multiplier));
if(is_quantized)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift));
ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&accumulator, biases, output, output_multiplier, output_shift, oq_info.offset));
}
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionAssemblyDispatch::validate(input, weights, biases, output, conv_info, depth_multiplier));
}
//Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
}
return Status{};
}
void NEDepthwiseConvolutionLayer3x3::run_generic()
{
// Fill border
NEScheduler::get().schedule(&_border_handler, Window::DimX);
// Execute depthwise convolution
NEScheduler::get().schedule(&_dwc_kernel, Window::DimX);
// Add biases
if(_has_bias || _is_quantized)
{
NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
}
// Permute output
if(!_is_nchw)
{
_permute_output.run();
}
}
void NEDepthwiseConvolutionLayer3x3::run_optimized()
{
// Run assembly function
_dwc_optimized_func.run();
// Permute output
if(_is_nchw)
{
_permute_output.run();
}
}
void NEDepthwiseConvolutionLayer3x3::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Permute input
if(_permute)
{
_permute_input.run();
}
_is_optimized ? run_optimized() : run_generic();
// Run activation
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}
void NEDepthwiseConvolutionLayer3x3::prepare()
{
if(!_is_prepared)
{
// Permute weights
if(_permute)
{
_permuted_weights.allocator()->allocate();
_permute_weights.run();
_original_weights->mark_as_unused();
}
// Prepare optimized function
if(_is_optimized)
{
_dwc_optimized_func.prepare();
if(!_permuted_weights.is_used())
{
_permuted_weights.allocator()->free();
}
}
_is_prepared = true;
}
}
NEDepthwiseConvolutionLayerOptimized::NEDepthwiseConvolutionLayerOptimized(std::shared_ptr<IMemoryManager> memory_manager)
: _memory_group(memory_manager), _dwc_kernel(), _dwc_optimized_func(memory_manager), _output_stage_kernel(), _border_handler(), _permute_input(), _permute_weights(), _permute_output(),
_activationlayer_function(), _accumulator(), _permuted_input(), _permuted_weights(), _permuted_output(), _original_weights(nullptr), _has_bias(false), _is_quantized(false), _is_optimized(false),
_is_nchw(true), _permute(false), _is_activationlayer_enabled(false), _is_prepared(false)
{
}
void NEDepthwiseConvolutionLayerOptimized::configure_generic(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_UNUSED(act_info);
PixelValue zero_value(0.f);
// Initialize the intermediate accumulator tensor in case of quantized input
if(_is_quantized)
{
TensorShape accum_shape = output->info()->tensor_shape();
DataLayout accum_layout = output->info()->data_layout();
if(!_is_nchw)
{
permute(accum_shape, PermutationVector(1U, 2U, 0U));
accum_layout = DataLayout::NCHW;
}
_memory_group.manage(&_accumulator);
_accumulator.allocator()->init(TensorInfo(accum_shape, 1, DataType::S32, output->info()->quantization_info()));
_accumulator.info()->set_data_layout(accum_layout);
zero_value = PixelValue(static_cast<uint32_t>(input->info()->quantization_info().uniform().offset));
}
if(!_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from HWI -> IHW
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
// Configure depthwise
_dwc_kernel.configure(&_permuted_input, &_permuted_weights, (_is_quantized) ? &_accumulator : &_permuted_output, conv_info, depth_multiplier, dilation);
// Configure border handler
_border_handler.configure(&_permuted_input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
// Allocate tensors
_permuted_input.allocator()->allocate();
}
else
{
// Configure depthwise convolution kernel
_dwc_kernel.configure(input, weights, (_is_quantized) ? &_accumulator : output, conv_info, depth_multiplier, dilation);
// Configure border handler
_border_handler.configure(input, _dwc_kernel.border_size(), BorderMode::CONSTANT, zero_value);
}
// Configure biases accumulation
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = (output->info()->total_size() == 0) ? iq_info : output->info()->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_output_stage_kernel.configure(&_accumulator, biases, _is_nchw ? output : &_permuted_output, output_multiplier, output_shift, oq_info.offset);
_accumulator.allocator()->allocate();
}
else if(_has_bias)
{
_output_stage_kernel.configure(_is_nchw ? output : &_permuted_output, biases);
}
// Permute output
if(!_is_nchw)
{
// Configure the function to transform the convoluted output to NHWC
_permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
_permuted_output.allocator()->allocate();
}
}
void NEDepthwiseConvolutionLayerOptimized::configure_optimized(const ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ActivationLayerInfo act_info_to_use = ActivationLayerInfo();
const bool is_relu = arm_compute::utils::info_helpers::is_relu(act_info);
const bool is_relu6 = arm_compute::utils::info_helpers::is_relu6(act_info);
_is_activationlayer_enabled = act_info.enabled() && !(is_relu || is_relu6);
if(!_is_activationlayer_enabled)
{
act_info_to_use = act_info;
}
if(_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NCHW -> NHWC
_permute_input.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
_permuted_input.info()->set_data_layout(DataLayout::NHWC);
// Configure the function to transform the weights tensor from IHW -> HWI
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
_permuted_weights.info()->set_data_layout(DataLayout::NHWC);
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
// Configure optimized depthwise
_dwc_optimized_func.configure(&_permuted_input, &_permuted_weights, biases, &_permuted_output, conv_info, depth_multiplier, act_info_to_use, dilation);
// Configure the function to transform the convoluted output to ACL's native ordering format NCHW
_permuted_output.info()->set_data_layout(DataLayout::NHWC);
_permute_output.configure(&_permuted_output, output, PermutationVector(1U, 2U, 0U));
// Allocate tensors
_permuted_input.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
else
{
_dwc_optimized_func.configure(input, weights, biases, output, conv_info, depth_multiplier, act_info_to_use, dilation);
}
}
void NEDepthwiseConvolutionLayerOptimized::configure(ITensor *input,
const ITensor *weights,
const ITensor *biases,
ITensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(NEDepthwiseConvolutionLayerOptimized::validate(input->info(), weights->info(), (biases == nullptr) ? nullptr : biases->info(),
output->info(), conv_info, depth_multiplier, act_info, dilation));
_original_weights = weights;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_has_bias = biases != nullptr;
_is_optimized = NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input->info(),
weights->info(),
conv_info,
depth_multiplier,
dilation);
_is_nchw = input->info()->data_layout() == DataLayout::NCHW;
_permute = _is_optimized == _is_nchw;
_is_prepared = false;
_is_activationlayer_enabled = act_info.enabled();
// Configure appropriate pipeline
if(_is_optimized)
{
configure_optimized(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
else
{
configure_generic(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation);
}
// Configure activation
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
Status NEDepthwiseConvolutionLayerOptimized::validate(const ITensorInfo *input,
const ITensorInfo *weights,
const ITensorInfo *biases,
const ITensorInfo *output,
const PadStrideInfo &conv_info,
unsigned int depth_multiplier,
const ActivationLayerInfo &act_info,
const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1);
const size_t idx_w = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) + (weights->dimension(idx_w) - 1) * (dilation.x() - 1) > input->dimension(idx_w) + conv_info.pad_left() + conv_info.pad_right());
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) + (weights->dimension(idx_h) - 1) * (dilation.y() - 1) > input->dimension(idx_h) + conv_info.pad_top() + conv_info.pad_bottom());
if(biases != nullptr)
{
const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 1);
ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(channel_idx));
}
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
if(is_quantized)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
ARM_COMPUTE_UNUSED(multiplier);
ARM_COMPUTE_RETURN_ERROR_ON(multiplier > 1.0f);
}
if(!NEDepthwiseConvolutionAssemblyDispatch::is_optimized_supported(input, weights, conv_info, depth_multiplier, dilation))
{
TensorInfo accumulator = TensorInfo(output->clone()->set_is_resizable(true).reset_padding().set_data_type(DataType::S32));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayer3x3Kernel::validate(input, weights, is_quantized ? &accumulator : output, conv_info, depth_multiplier, dilation));
if(is_quantized)
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&accumulator, biases, output));
}
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionAssemblyDispatch::validate(input, weights, biases, output, conv_info, depth_multiplier, act_info, dilation));
}
//Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
}
return Status{};
}
void NEDepthwiseConvolutionLayerOptimized::run_generic()
{
// Fill border
NEScheduler::get().schedule(&_border_handler, Window::DimX);
// Execute depthwise convolution
NEScheduler::get().schedule(&_dwc_kernel, Window::DimX);
// Add biases
if(_has_bias || _is_quantized)
{
NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
}
// Permute output
if(!_is_nchw)
{
_permute_output.run();
}
}
void NEDepthwiseConvolutionLayerOptimized::run_optimized()
{
// Run assembly function
_dwc_optimized_func.run();
// Permute output
if(_is_nchw)
{
_permute_output.run();
}
}
void NEDepthwiseConvolutionLayerOptimized::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Permute input
if(_permute)
{
_permute_input.run();
}
_is_optimized ? run_optimized() : run_generic();
// Run activation
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}
void NEDepthwiseConvolutionLayerOptimized::prepare()
{
if(!_is_prepared)
{
// Permute weights
if(_permute)
{
_permuted_weights.allocator()->allocate();
_permute_weights.run();
_original_weights->mark_as_unused();
}
// Prepare optimized function
if(_is_optimized)
{
_dwc_optimized_func.prepare();
if(!_permuted_weights.is_used())
{
_permuted_weights.allocator()->free();
}
}
_is_prepared = true;
}
}
NEDepthwiseConvolutionLayer::NEDepthwiseConvolutionLayer()
: _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _depthwise_conv_kernel(), _vector_to_tensor_kernel(), _output_stage_kernel(), _fill_border(), _v2mm_input_fill_border(),
_v2mm_weights_fill_border(), _permute_input(), _permute_weights(), _permute_output(), _activationlayer_function(), _input_reshaped(), _weights_reshaped(), _v2mm_output(), _output_reshaped(),
_permuted_input(), _permuted_weights(), _permuted_output(), _is_prepared(false), _is_quantized(false), _is_nhwc(false), _is_activationlayer_enabled(false), _is_optimized(false),
_original_weights(nullptr)
{
}
void NEDepthwiseConvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(NEDepthwiseConvolutionLayer::validate(input->info(), weights->info(), (biases == nullptr) ? nullptr : biases->info(),
output->info(), conv_info, depth_multiplier, act_info, dilation));
_is_nhwc = input->info()->data_layout() == DataLayout::NHWC;
_is_optimized = _is_nhwc && input->info()->data_type() == DataType::F32;
if(!_is_optimized)
{
ITensor *input_to_use = input;
const ITensor *weights_to_use = weights;
ITensor *output_to_use = output;
if(_is_nhwc)
{
_permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
input_to_use = &_permuted_input;
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
weights_to_use = &_permuted_weights;
}
const size_t weights_w = weights_to_use->info()->dimension(0);
const size_t weights_h = weights_to_use->info()->dimension(1);
const size_t weights_z = weights_to_use->info()->dimension(2);
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
_is_prepared = false;
_original_weights = weights_to_use;
// Should bias be appended ?
bool append_bias = (biases != nullptr) && !_is_quantized;
// Calculate output shape
TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input->info(), *weights->info(), conv_info, depth_multiplier, dilation);
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape));
ARM_COMPUTE_ERROR_ON_MISMATCHING_DIMENSIONS(output->info()->tensor_shape(), output_shape);
if(_is_nhwc)
{
permute(output_shape, PermutationVector(1U, 2U, 0U));
_permuted_output.allocator()->init(output->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
_permuted_output.info()->set_data_layout(DataLayout::NCHW);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
output_to_use = &_permuted_output;
}
// Output width and height
const unsigned int conv_w = output_shape.x();
const unsigned int conv_h = output_shape.y();
// Set up intermediate tensors
const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0);
const size_t conv_size = conv_w * conv_h;
// Im2Col configuration
TensorShape shape_im2col = input_to_use->info()->tensor_shape();
shape_im2col.set(0, patch_size);
shape_im2col.set(1, conv_size);
shape_im2col.set(2, weights_z);
_input_reshaped.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col).set_data_layout(DataLayout::NCHW));
_im2col_kernel.configure(input_to_use, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation);
// Weights reshape configuration
const TensorShape shape_weights_reshape(patch_size, weights_z);
_weights_reshaped.allocator()->init(weights->info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape).set_data_layout(DataLayout::NCHW));
_weights_reshape_kernel.configure(weights_to_use, &_weights_reshaped, append_bias ? biases : nullptr);
// GEMV configuration
DataType v2mm_dt = (input->info()->data_type() == DataType::QASYMM8) ? DataType::S32 : input->info()->data_type();
TensorShape shape_v2mm_out = input_to_use->info()->tensor_shape();
shape_v2mm_out.set(0, conv_size * weights_z);
shape_v2mm_out.set(1, 1);
shape_v2mm_out.set(2, 1);
_v2mm_output.allocator()->init(input->info()->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out).set_data_layout(DataLayout::NCHW));
_v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
_output_reshaped.allocator()->init(_v2mm_output.info()->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape));
_vector_to_tensor_kernel.configure(&_v2mm_output, (_is_quantized) ? &_output_reshaped : output_to_use, conv_w, conv_h);
// Output staged configuration
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->info()->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_output_stage_kernel.configure(&_output_reshaped, biases, output_to_use, output_multiplier, output_shift, oq_info.offset);
_output_reshaped.allocator()->allocate();
}
if(_is_nhwc)
{
_permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
_permuted_input.allocator()->allocate();
_permuted_weights.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
// Fill borders on inputs
PixelValue zero_in(static_cast<int32_t>(0));
PixelValue zero_w(static_cast<int32_t>(0));
if(_is_quantized)
{
zero_in = PixelValue(static_cast<int32_t>(input->info()->quantization_info().uniform().offset));
zero_w = PixelValue(static_cast<int32_t>(weights->info()->quantization_info().uniform().offset));
}
BorderSize border_size = _v2mm_kernel.border_size();
_v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, zero_in);
border_size.bottom = 0;
_v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, zero_w);
// Allocate intermediate tensors
_input_reshaped.allocator()->allocate();
_v2mm_output.allocator()->allocate();
}
else
{
// Configure kernel
_depthwise_conv_kernel.configure(input, weights, biases, output, conv_info, depth_multiplier, dilation);
// Fill input borders
_fill_border.configure(input, _depthwise_conv_kernel.border_size(), BorderMode::CONSTANT, PixelValue(static_cast<uint64_t>(0), input->info()->data_type()));
}
//Configure Activation Layer
_is_activationlayer_enabled = act_info.enabled();
if(_is_activationlayer_enabled)
{
_activationlayer_function.configure(output, nullptr, act_info);
}
}
Status NEDepthwiseConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
unsigned int depth_multiplier, const ActivationLayerInfo &act_info, const Size2D &dilation)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON(input->data_layout() == DataLayout::UNKNOWN);
ARM_COMPUTE_RETURN_ERROR_ON(dilation.x() < 1 || dilation.y() < 1);
const unsigned int width_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
const unsigned int channel_idx = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) + (weights->dimension(width_idx) - 1) * (dilation.x() - 1) > input->dimension(width_idx) + conv_info.pad_left() + conv_info.pad_right());
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(height_idx) + (weights->dimension(height_idx) - 1) * (dilation.y() - 1) > input->dimension(height_idx) + conv_info.pad_top() + conv_info.pad_bottom());
ARM_COMPUTE_RETURN_ERROR_ON((input->dimension(channel_idx) * depth_multiplier) != weights->dimension(channel_idx));
if(input->data_layout() != DataLayout::NHWC || input->data_type() != DataType::F32)
{
// Clone output to use auto init
auto output_clone = output->clone();
const ITensorInfo *input_to_use = input;
const ITensorInfo *weights_to_use = weights;
const ITensorInfo *output_to_use = output_clone.get();
TensorShape permuted_input_shape = input->tensor_shape();
TensorShape permuted_weights_shape = weights->tensor_shape();
TensorInfo permuted_input;
TensorInfo permuted_weights;
if(input->data_layout() == DataLayout::NHWC)
{
permute(permuted_input_shape, PermutationVector(1U, 2U, 0U));
permute(permuted_weights_shape, PermutationVector(1U, 2U, 0U));
permuted_input = TensorInfo(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_input_shape).set_data_layout(DataLayout::NCHW));
permuted_weights = TensorInfo(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(permuted_weights_shape).set_data_layout(DataLayout::NCHW));
input_to_use = &permuted_input;
weights_to_use = &permuted_weights;
}
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const bool append_bias = (biases != nullptr) && !is_quantized;
TensorShape output_shape = shape_calculator::compute_depthwise_convolution_shape(*input, *weights, conv_info, depth_multiplier, dilation);
const size_t weights_w = weights_to_use->dimension(0);
const size_t weights_h = weights_to_use->dimension(1);
const size_t weights_z = weights_to_use->dimension(2);
const unsigned int conv_w = output_shape[width_idx];
const unsigned int conv_h = output_shape[height_idx];
const size_t patch_size = weights_w * weights_h + (append_bias ? 1 : 0);
const size_t conv_size = conv_w * conv_h;
// Output auto inizialitation if not yet initialized
auto_init_if_empty(*output_clone, input->clone()->set_tensor_shape(output_shape));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), output_shape);
TensorInfo permuted_output;
if(input->data_layout() == DataLayout::NHWC)
{
permute(output_shape, PermutationVector(1U, 2U, 0U));
permuted_output = TensorInfo(output_clone->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_shape).set_data_layout(DataLayout::NCHW));
output_to_use = &permuted_output;
}
// Im2Col configuration
TensorShape shape_im2col = input_to_use->tensor_shape();
shape_im2col.set(0, patch_size);
shape_im2col.set(1, conv_size);
shape_im2col.set(2, weights_z);
TensorInfo input_reshaped(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_im2col).set_data_layout(DataLayout::NCHW));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseIm2ColKernel::validate(input_to_use, &input_reshaped, Size2D(weights_w, weights_h), conv_info, append_bias, depth_multiplier, dilation));
// Weights reshape configuration
const TensorShape shape_weights_reshape(patch_size, weights_z);
TensorInfo weights_reshaped(weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(shape_weights_reshape).set_data_layout(DataLayout::NCHW));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseWeightsReshapeKernel::validate(weights_to_use, &weights_reshaped, append_bias ? biases : nullptr));
// GEMV configuration
DataType v2mm_dt = (input->data_type() == DataType::QASYMM8) ? DataType::S32 : input->data_type();
TensorShape shape_v2mm_out = input_to_use->tensor_shape();
shape_v2mm_out.set(0, conv_size * weights_z);
shape_v2mm_out.set(1, 1);
shape_v2mm_out.set(2, 1);
TensorInfo v2mm_output(input->clone()->set_is_resizable(true).reset_padding().set_data_type(v2mm_dt).set_tensor_shape(shape_v2mm_out).set_data_layout(DataLayout::NCHW));
ARM_COMPUTE_RETURN_ON_ERROR(NEGEMMMatrixVectorMultiplyKernel::validate(&input_reshaped, &weights_reshaped, &v2mm_output));
TensorInfo output_reshaped(v2mm_output.clone()->set_is_resizable(true).reset_padding().set_tensor_shape(output_to_use->tensor_shape()));
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseVectorToTensorKernel::validate(&v2mm_output, (is_quantized) ? &output_reshaped : output_to_use, conv_w, conv_h));
if(is_quantized)
{
const UniformQuantizationInfo iq_info = input->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->quantization_info().uniform();
const UniformQuantizationInfo oq_info = output->quantization_info().uniform();
float multiplier = (iq_info.scale * wq_info.scale) / oq_info.scale;
int output_multiplier;
int output_shift;
ARM_COMPUTE_RETURN_ON_ERROR(quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift));
ARM_COMPUTE_RETURN_ON_ERROR(NEDirectConvolutionLayerOutputStageKernel::validate(&output_reshaped, biases, output_to_use, output_multiplier, output_shift, oq_info.offset));
}
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(NEDepthwiseConvolutionLayerNativeKernel::validate(input, weights, biases, output, conv_info, depth_multiplier, dilation));
}
// Validate Activation Layer
if(act_info.enabled())
{
ARM_COMPUTE_RETURN_ON_ERROR(NEActivationLayer::validate(output, nullptr, act_info));
}
return Status{};
}
void NEDepthwiseConvolutionLayer::run()
{
if(!_is_optimized)
{
prepare();
if(_is_nhwc)
{
_permute_input.run();
}
NEScheduler::get().schedule(&_im2col_kernel, Window::DimX);
NEScheduler::get().schedule(&_v2mm_input_fill_border, Window::DimX);
NEScheduler::get().schedule(&_v2mm_kernel, Window::DimX);
NEScheduler::get().schedule(&_vector_to_tensor_kernel, Window::DimX);
if(_is_quantized)
{
NEScheduler::get().schedule(&_output_stage_kernel, Window::DimX);
}
if(_is_nhwc)
{
_permute_output.run();
}
}
else
{
NEScheduler::get().schedule(&_fill_border, Window::DimX);
NEScheduler::get().schedule(&_depthwise_conv_kernel, Window::DimY);
}
if(_is_activationlayer_enabled)
{
_activationlayer_function.run();
}
}
void NEDepthwiseConvolutionLayer::prepare()
{
if(!_is_prepared && !_is_optimized)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
if(_is_nhwc)
{
_permute_weights.run();
}
// Run reshape and mark original weights as unused
_weights_reshaped.allocator()->allocate();
NEScheduler::get().schedule(&_weights_reshape_kernel, Window::DimX);
NEScheduler::get().schedule(&_v2mm_weights_fill_border, Window::DimX);
_original_weights->mark_as_unused();
_is_prepared = true;
}
}
} // namespace arm_compute