blob: 1f2cc3d73bdd15ec50219f9258669cfdc73cbd0c [file] [log] [blame]
/*
* Copyright (c) 2017-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/NEON/functions/NEDeconvolutionLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Utils.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/runtime/NEON/NEScheduler.h"
using namespace arm_compute::misc::shape_calculator;
namespace arm_compute
{
NEDeconvolutionLayer::NEDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
: _memory_group(std::move(memory_manager)),
_conv_f(),
_upsample_f(),
_flip_weights(),
_permute_input(),
_permute_weights(),
_permute_output(),
_scaled_output(),
_weights_flipped(),
_permuted_input(),
_permuted_weights(),
_permuted_output(),
_is_nchw(false),
_original_weights(nullptr),
_input(nullptr),
_info(),
_is_prepared(false)
{
}
Status NEDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(weights, input);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(weights, input);
const unsigned int width_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::HEIGHT);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) != weights->dimension(height_idx));
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(width_idx) < 1);
ARM_COMPUTE_RETURN_ERROR_ON(!info.padding_is_symmetric());
const unsigned int stride_x = info.stride().first;
const unsigned int stride_y = info.stride().second;
auto out_dims = deconvolution_output_dimensions(input->dimension(width_idx), input->dimension(height_idx), weights->dimension(width_idx), weights->dimension(height_idx),
info.pad().first, info.pad().second, stride_x, stride_y);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
if(bias != nullptr)
{
if(is_data_type_quantized_asymmetric(input->data_type()))
{
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
}
else
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
}
}
if(output->tensor_shape().total_size() > 0)
{
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output);
const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid.");
}
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, padx, pady);
TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape));
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
const unsigned int batches_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::BATCHES);
const unsigned int channel_idx = get_data_layout_dimension_index(weights->data_layout(), DataLayoutDimension::CHANNEL);
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(batches_idx) != scale_out_info.dimension(batches_idx));
ARM_COMPUTE_RETURN_ERROR_ON(input->dimension(channel_idx) != scale_out_info.dimension(channel_idx));
ARM_COMPUTE_RETURN_ON_ERROR(NEConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, WeightsInfo()));
return Status{};
}
void NEDeconvolutionLayer::configure(ITensor *input, const ITensor *weights, const ITensor *bias, ITensor *output, const PadStrideInfo &info)
{
// Perform validation step
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(NEDeconvolutionLayer::validate(input->info(), weights->info(), (bias == nullptr) ? nullptr : bias->info(), output->info(), info));
const DataLayout data_layout = input->info()->data_layout();
_input = input;
_original_weights = weights;
_info = info;
_is_prepared = false;
_is_nchw = data_layout == DataLayout::NCHW;
const unsigned int stride_x = info.stride().first;
const unsigned int stride_y = info.stride().second;
const unsigned int width_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const unsigned int height_idx = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
auto out_dims = deconvolution_output_dimensions(input->info()->dimension(width_idx), input->info()->dimension(height_idx), weights->info()->dimension(width_idx),
weights->info()->dimension(height_idx),
info.pad().first, info.pad().second, stride_x, stride_y);
const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
// Output auto initialization if not yet initialized
auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type(), input->info()->quantization_info());
_memory_group.manage(&_scaled_output);
if(!_is_nchw)
{
_memory_group.manage(&_permuted_input);
_memory_group.manage(&_permuted_output);
// Configure the function to transform the input tensor from NHWC -> NCHW
_permuted_input.info()->set_quantization_info(input->info()->quantization_info());
_permute_input.configure(input, &_permuted_input, PermutationVector(1U, 2U, 0U));
_permuted_input.info()->set_data_layout(DataLayout::NCHW);
// Configure the function to transform the weights tensor from NHWC -> NCHW
_permuted_weights.info()->set_quantization_info(weights->info()->quantization_info());
_permute_weights.configure(weights, &_permuted_weights, PermutationVector(1U, 2U, 0U));
_permuted_weights.info()->set_data_layout(DataLayout::NCHW);
// Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*_permuted_input.info(), *_permuted_weights.info(), stride_x, stride_y, out_dims, padx,
pady);
TensorInfo scale_out_info(scale_out_shape, 1, _permuted_input.info()->data_type(), _permuted_input.info()->quantization_info());
scale_out_info.set_data_layout(DataLayout::NCHW);
_scaled_output.allocator()->init(scale_out_info);
const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2);
_upsample_f.configure(&_permuted_input, &_scaled_output, upsample_info);
_weights_flipped.allocator()->init(*_permuted_weights.info()->clone());
_weights_flipped.info()->set_quantization_info(weights->info()->quantization_info());
_flip_weights.configure(&_permuted_weights, &_weights_flipped);
// setup the function to convolve the upscaled output
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
_permuted_output.info()->set_quantization_info(output->info()->quantization_info());
_conv_f.configure(&_scaled_output, &_weights_flipped, bias, &_permuted_output, conv_info);
// Configure the function to transform the convoluted output to NHWC
_permute_output.configure(&_permuted_output, output, PermutationVector(2U, 0U, 1U));
_permuted_output.info()->set_data_layout(DataLayout::NCHW);
_permuted_input.allocator()->allocate();
_permuted_output.allocator()->allocate();
}
else
{
// Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
unsigned int padx = 0;
unsigned int pady = 0;
const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, out_dims, padx, pady);
TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
scale_out_info.set_data_layout(data_layout);
_scaled_output.allocator()->init(scale_out_info);
const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2);
_upsample_f.configure(input, &_scaled_output, upsample_info);
_weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
_flip_weights.configure(weights, &_weights_flipped);
// setup the function to convolve the upscaled output
const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
_conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info);
}
_scaled_output.allocator()->allocate();
}
void NEDeconvolutionLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
// Permute input
if(!_is_nchw)
{
_permute_input.run();
}
_upsample_f.run();
_conv_f.run();
// Permute output
if(!_is_nchw)
{
_permute_output.run();
}
}
void NEDeconvolutionLayer::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
// Permute weights
if(!_is_nchw)
{
// Manually manage _permuted_weights
_permuted_weights.allocator()->allocate();
_permute_weights.run();
}
// Run weights flipping and mark original weights tensor as unused
_weights_flipped.allocator()->allocate();
NEScheduler::get().schedule(&_flip_weights, Window::DimZ);
_original_weights->mark_as_unused();
// Prepare convolution
_conv_f.prepare();
if(!_weights_flipped.is_used())
{
_weights_flipped.allocator()->free();
}
if(!_is_nchw)
{
// Manually manage _permuted_weights
// Free _permuted_weights as it not used after this method (prepare)
_permuted_weights.allocator()->free();
}
_is_prepared = true;
}
}
} // namespace arm_compute