blob: 13a34b43cd4521a689b2591a141dcf179a811d07 [file] [log] [blame]
/*
* Copyright (c) 2018-2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CPP/functions/CPPDetectionOutputLayer.h"
#include "arm_compute/core/Error.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Validate.h"
#include "support/ToolchainSupport.h"
#include <list>
namespace arm_compute
{
namespace
{
Status validate_arguments(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_loc, 1, DataType::F32);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, input_conf, input_priorbox);
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_loc->num_dimensions() > 2, "The location input tensor should be [C1, N].");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_conf->num_dimensions() > 2, "The location input tensor should be [C2, N].");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_priorbox->num_dimensions() > 3, "The priorbox input tensor should be [C3, 2, N].");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.eta() <= 0.f && info.eta() > 1.f, "Eta should be between 0 and 1");
const int num_priors = input_priorbox->tensor_shape()[0] / 4;
ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_loc_classes() * 4)) != input_loc->tensor_shape()[0], "Number of priors must match number of location predictions.");
ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_classes())) != input_conf->tensor_shape()[0], "Number of priors must match number of confidence predictions.");
// Validate configured output
if(output->total_size() != 0)
{
const unsigned int max_size = info.keep_top_k() * (input_loc->num_dimensions() > 1 ? input_loc->dimension(1) : 1);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), TensorShape(7U, max_size));
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, output);
}
return Status{};
}
/** Function used to sort pair<float, T> in descend order based on the score (first) value.
*/
template <typename T>
bool SortScorePairDescend(const std::pair<float, T> &pair1,
const std::pair<float, T> &pair2)
{
return pair1.first > pair2.first;
}
/** Get location predictions from input_loc.
*
* @param[in] input_loc The input location prediction.
* @param[in] num The number of images.
* @param[in] num_priors number of predictions per class.
* @param[in] num_loc_classes number of location classes. It is 1 if share_location is true,
* and is equal to number of classes needed to predict otherwise.
* @param[in] share_location If true, all classes share the same location prediction.
* @param[out] all_location_predictions All the location predictions.
*
*/
void retrieve_all_loc_predictions(const ITensor *input_loc, const int num,
const int num_priors, const int num_loc_classes,
const bool share_location, std::vector<LabelBBox> &all_location_predictions)
{
for(int i = 0; i < num; ++i)
{
for(int c = 0; c < num_loc_classes; ++c)
{
int label = share_location ? -1 : c;
if(all_location_predictions[i].find(label) == all_location_predictions[i].end())
{
all_location_predictions[i][label].resize(num_priors);
}
else
{
ARM_COMPUTE_ERROR_ON(all_location_predictions[i][label].size() != static_cast<size_t>(num_priors));
break;
}
}
}
for(int i = 0; i < num; ++i)
{
for(int p = 0; p < num_priors; ++p)
{
for(int c = 0; c < num_loc_classes; ++c)
{
const int label = share_location ? -1 : c;
const int base_ptr = i * num_priors * num_loc_classes * 4 + p * num_loc_classes * 4 + c * 4;
//xmin, ymin, xmax, ymax
all_location_predictions[i][label][p][0] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr)));
all_location_predictions[i][label][p][1] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 1)));
all_location_predictions[i][label][p][2] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 2)));
all_location_predictions[i][label][p][3] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 3)));
}
}
}
}
/** Get confidence predictions from input_conf.
*
* @param[in] input_loc The input location prediction.
* @param[in] num The number of images.
* @param[in] num_priors Number of predictions per class.
* @param[in] num_loc_classes Number of location classes. It is 1 if share_location is true,
* and is equal to number of classes needed to predict otherwise.
* @param[out] all_location_predictions All the location predictions.
*
*/
void retrieve_all_conf_scores(const ITensor *input_conf, const int num,
const int num_priors, const int num_classes,
std::vector<std::map<int, std::vector<float>>> &all_confidence_scores)
{
std::vector<float> tmp_buffer;
tmp_buffer.resize(num * num_priors * num_classes);
for(int i = 0; i < num; ++i)
{
for(int c = 0; c < num_classes; ++c)
{
for(int p = 0; p < num_priors; ++p)
{
tmp_buffer[i * num_classes * num_priors + c * num_priors + p] =
*reinterpret_cast<float *>(input_conf->ptr_to_element(Coordinates(i * num_classes * num_priors + p * num_classes + c)));
}
}
}
for(int i = 0; i < num; ++i)
{
for(int c = 0; c < num_classes; ++c)
{
all_confidence_scores[i][c].resize(num_priors);
all_confidence_scores[i][c].assign(&tmp_buffer[i * num_classes * num_priors + c * num_priors],
&tmp_buffer[i * num_classes * num_priors + c * num_priors + num_priors]);
}
}
}
/** Get prior boxes from input_priorbox.
*
* @param[in] input_priorbox The input location prediction.
* @param[in] num_priors Number of priors.
* @param[in] num_loc_classes number of location classes. It is 1 if share_location is true,
* and is equal to number of classes needed to predict otherwise.
* @param[out] all_prior_bboxes If true, all classes share the same location prediction.
* @param[out] all_location_predictions All the location predictions.
*
*/
void retrieve_all_priorbox(const ITensor *input_priorbox,
const int num_priors,
std::vector<BBox> &all_prior_bboxes,
std::vector<std::array<float, 4>> &all_prior_variances)
{
for(int i = 0; i < num_priors; ++i)
{
all_prior_bboxes[i] =
{
{
*reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4))),
*reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 1))),
*reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 2))),
*reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 3)))
}
};
}
std::array<float, 4> var({ { 0, 0, 0, 0 } });
for(int i = 0; i < num_priors; ++i)
{
for(int j = 0; j < 4; ++j)
{
var[j] = *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates((num_priors + i) * 4 + j)));
}
all_prior_variances[i] = var;
}
}
/** Decode a bbox according to a prior bbox.
*
* @param[in] prior_bbox The input prior bounding boxes.
* @param[in] prior_variance The corresponding input variance.
* @param[in] code_type The detection output code type used to decode the results.
* @param[in] variance_encoded_in_target If true, the variance is encoded in target.
* @param[in] clip_bbox If true, the results should be between 0.f and 1.f.
* @param[in] bbox The input bbox to decode
* @param[out] decode_bbox The decoded bboxes.
*
*/
void DecodeBBox(const BBox &prior_bbox, const std::array<float, 4> &prior_variance,
const DetectionOutputLayerCodeType code_type, const bool variance_encoded_in_target,
const bool clip_bbox, const BBox &bbox, BBox &decode_bbox)
{
// if the variance is encoded in target, we simply need to add the offset predictions
// otherwise we need to scale the offset accordingly.
switch(code_type)
{
case DetectionOutputLayerCodeType::CORNER:
{
decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]);
decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]);
decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]);
decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]);
break;
}
case DetectionOutputLayerCodeType::CENTER_SIZE:
{
const float prior_width = prior_bbox[2] - prior_bbox[0];
const float prior_height = prior_bbox[3] - prior_bbox[1];
// Check if the prior width and height are right
ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
const float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.;
const float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.;
const float decode_bbox_center_x = (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width + prior_center_x;
const float decode_bbox_center_y = (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height + prior_center_y;
const float decode_bbox_width = (variance_encoded_in_target ? std::exp(bbox[2]) : std::exp(prior_variance[2] * bbox[2])) * prior_width;
const float decode_bbox_height = (variance_encoded_in_target ? std::exp(bbox[3]) : std::exp(prior_variance[3] * bbox[3])) * prior_height;
decode_bbox[0] = (decode_bbox_center_x - decode_bbox_width / 2.f);
decode_bbox[1] = (decode_bbox_center_y - decode_bbox_height / 2.f);
decode_bbox[2] = (decode_bbox_center_x + decode_bbox_width / 2.f);
decode_bbox[3] = (decode_bbox_center_y + decode_bbox_height / 2.f);
break;
}
case DetectionOutputLayerCodeType::CORNER_SIZE:
{
const float prior_width = prior_bbox[2] - prior_bbox[0];
const float prior_height = prior_bbox[3] - prior_bbox[1];
// Check if the prior width and height are greater than 0
ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width;
decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height;
decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]) * prior_width;
decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]) * prior_height;
break;
}
default:
ARM_COMPUTE_ERROR("Unsupported Detection Output Code Type.");
}
if(clip_bbox)
{
for(auto &d_bbox : decode_bbox)
{
d_bbox = utility::clamp(d_bbox, 0.f, 1.f);
}
}
}
/** Do non maximum suppression given bboxes and scores.
*
* @param[in] bboxes The input bounding boxes.
* @param[in] scores The corresponding input confidence.
* @param[in] score_threshold The threshold used to filter detection results.
* @param[in] nms_threshold The threshold used in non maximum suppression.
* @param[in] eta Adaptation rate for nms threshold.
* @param[in] top_k If not -1, keep at most top_k picked indices.
* @param[out] indices The kept indices of bboxes after nms.
*
*/
void ApplyNMSFast(const std::vector<BBox> &bboxes,
const std::vector<float> &scores, const float score_threshold,
const float nms_threshold, const float eta, const int top_k,
std::vector<int> &indices)
{
ARM_COMPUTE_ERROR_ON_MSG(bboxes.size() != scores.size(), "bboxes and scores have different size.");
// Get top_k scores (with corresponding indices).
std::list<std::pair<float, int>> score_index_vec;
// Generate index score pairs.
for(size_t i = 0; i < scores.size(); ++i)
{
if(scores[i] > score_threshold)
{
score_index_vec.emplace_back(std::make_pair(scores[i], i));
}
}
// Sort the score pair according to the scores in descending order
score_index_vec.sort(SortScorePairDescend<int>);
// Keep top_k scores if needed.
const int score_index_vec_size = score_index_vec.size();
if(top_k > -1 && top_k < score_index_vec_size)
{
score_index_vec.resize(top_k);
}
// Do nms.
float adaptive_threshold = nms_threshold;
indices.clear();
while(!score_index_vec.empty())
{
const int idx = score_index_vec.front().second;
bool keep = true;
for(int kept_idx : indices)
{
if(keep)
{
// Compute the jaccard (intersection over union IoU) overlap between two bboxes.
BBox intersect_bbox = std::array<float, 4>({ 0, 0, 0, 0 });
if(bboxes[kept_idx][0] > bboxes[idx][2] || bboxes[kept_idx][2] < bboxes[idx][0] || bboxes[kept_idx][1] > bboxes[idx][3] || bboxes[kept_idx][3] < bboxes[idx][1])
{
intersect_bbox = std::array<float, 4>({ { 0, 0, 0, 0 } });
}
else
{
intersect_bbox = std::array<float, 4>({ {
std::max(bboxes[idx][0], bboxes[kept_idx][0]),
std::max(bboxes[idx][1], bboxes[kept_idx][1]),
std::min(bboxes[idx][2], bboxes[kept_idx][2]),
std::min(bboxes[idx][3], bboxes[kept_idx][3])
}
});
}
float intersect_width = intersect_bbox[2] - intersect_bbox[0];
float intersect_height = intersect_bbox[3] - intersect_bbox[1];
float overlap = 0.f;
if(intersect_width > 0 && intersect_height > 0)
{
float intersect_size = intersect_width * intersect_height;
float bbox1_size = (bboxes[idx][2] < bboxes[idx][0]
|| bboxes[idx][3] < bboxes[idx][1]) ?
0.f :
(bboxes[idx][2] - bboxes[idx][0]) * (bboxes[idx][3] - bboxes[idx][1]); //BBoxSize(bboxes[idx]);
float bbox2_size = (bboxes[kept_idx][2] < bboxes[kept_idx][0]
|| bboxes[kept_idx][3] < bboxes[kept_idx][1]) ?
0.f :
(bboxes[kept_idx][2] - bboxes[kept_idx][0]) * (bboxes[kept_idx][3] - bboxes[kept_idx][1]); // BBoxSize(bboxes[kept_idx]);
overlap = intersect_size / (bbox1_size + bbox2_size - intersect_size);
}
keep = (overlap <= adaptive_threshold);
}
else
{
break;
}
}
if(keep)
{
indices.push_back(idx);
}
score_index_vec.erase(score_index_vec.begin());
if(keep && eta < 1.f && adaptive_threshold > 0.5f)
{
adaptive_threshold *= eta;
}
}
}
} // namespace
CPPDetectionOutputLayer::CPPDetectionOutputLayer()
: _input_loc(nullptr), _input_conf(nullptr), _input_priorbox(nullptr), _output(nullptr), _info(), _num_priors(), _num(), _all_location_predictions(), _all_confidence_scores(), _all_prior_bboxes(),
_all_prior_variances(), _all_decode_bboxes(), _all_indices()
{
}
void CPPDetectionOutputLayer::configure(const ITensor *input_loc, const ITensor *input_conf, const ITensor *input_priorbox, ITensor *output, DetectionOutputLayerInfo info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
// Output auto initialization if not yet initialized
// Since the number of bboxes to kept is unknown before nms, the shape is set to the maximum
// The maximum is keep_top_k * input_loc_size[1]
// Each row is a 7 dimension std::vector, which stores [image_id, label, confidence, xmin, ymin, xmax, ymax]
const unsigned int max_size = info.keep_top_k() * (input_loc->info()->num_dimensions() > 1 ? input_loc->info()->dimension(1) : 1);
auto_init_if_empty(*output->info(), input_loc->info()->clone()->set_tensor_shape(TensorShape(7U, max_size)));
// Perform validation step
ARM_COMPUTE_ERROR_THROW_ON(validate_arguments(input_loc->info(), input_conf->info(), input_priorbox->info(), output->info(), info));
_input_loc = input_loc;
_input_conf = input_conf;
_input_priorbox = input_priorbox;
_output = output;
_info = info;
_num_priors = input_priorbox->info()->dimension(0) / 4;
_num = (_input_loc->info()->num_dimensions() > 1 ? _input_loc->info()->dimension(1) : 1);
_all_location_predictions.resize(_num);
_all_confidence_scores.resize(_num);
_all_prior_bboxes.resize(_num_priors);
_all_prior_variances.resize(_num_priors);
_all_decode_bboxes.resize(_num);
for(int i = 0; i < _num; ++i)
{
for(int c = 0; c < _info.num_loc_classes(); ++c)
{
const int label = _info.share_location() ? -1 : c;
if(label == _info.background_label_id())
{
// Ignore background class.
continue;
}
_all_decode_bboxes[i][label].resize(_num_priors);
}
}
_all_indices.resize(_num);
Coordinates coord;
coord.set_num_dimensions(output->info()->num_dimensions());
output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
}
Status CPPDetectionOutputLayer::validate(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
{
ARM_COMPUTE_RETURN_ON_ERROR(validate_arguments(input_loc, input_conf, input_priorbox, output, info));
return Status{};
}
void CPPDetectionOutputLayer::run()
{
// Retrieve all location predictions.
retrieve_all_loc_predictions(_input_loc, _num, _num_priors, _info.num_loc_classes(), _info.share_location(), _all_location_predictions);
// Retrieve all confidences.
retrieve_all_conf_scores(_input_conf, _num, _num_priors, _info.num_classes(), _all_confidence_scores);
// Retrieve all prior bboxes.
retrieve_all_priorbox(_input_priorbox, _num_priors, _all_prior_bboxes, _all_prior_variances);
// Decode all loc predictions to bboxes
const bool clip_bbox = false;
for(int i = 0; i < _num; ++i)
{
for(int c = 0; c < _info.num_loc_classes(); ++c)
{
const int label = _info.share_location() ? -1 : c;
if(label == _info.background_label_id())
{
// Ignore background class.
continue;
}
ARM_COMPUTE_ERROR_ON_MSG(_all_location_predictions[i].find(label) == _all_location_predictions[i].end(), "Could not find location predictions for label %d.", label);
const std::vector<BBox> &label_loc_preds = _all_location_predictions[i].find(label)->second;
const int num_bboxes = _all_prior_bboxes.size();
ARM_COMPUTE_ERROR_ON(_all_prior_variances[i].size() != 4);
for(int j = 0; j < num_bboxes; ++j)
{
DecodeBBox(_all_prior_bboxes[j], _all_prior_variances[j], _info.code_type(), _info.variance_encoded_in_target(), clip_bbox, label_loc_preds[j], _all_decode_bboxes[i][label][j]);
}
}
}
int num_kept = 0;
for(int i = 0; i < _num; ++i)
{
const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
std::map<int, std::vector<int>> indices;
int num_det = 0;
for(int c = 0; c < _info.num_classes(); ++c)
{
if(c == _info.background_label_id())
{
// Ignore background class
continue;
}
const int label = _info.share_location() ? -1 : c;
if(conf_scores.find(c) == conf_scores.end() || decode_bboxes.find(label) == decode_bboxes.end())
{
ARM_COMPUTE_ERROR("Could not find predictions for label %d.", label);
}
const std::vector<float> &scores = conf_scores.find(c)->second;
const std::vector<BBox> &bboxes = decode_bboxes.find(label)->second;
ApplyNMSFast(bboxes, scores, _info.confidence_threshold(), _info.nms_threshold(), _info.eta(), _info.top_k(), indices[c]);
num_det += indices[c].size();
}
int num_to_add = 0;
if(_info.keep_top_k() > -1 && num_det > _info.keep_top_k())
{
std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
for(auto const &it : indices)
{
const int label = it.first;
const std::vector<int> &label_indices = it.second;
if(conf_scores.find(label) == conf_scores.end())
{
ARM_COMPUTE_ERROR("Could not find predictions for label %d.", label);
}
const std::vector<float> &scores = conf_scores.find(label)->second;
for(auto idx : label_indices)
{
ARM_COMPUTE_ERROR_ON(idx > static_cast<int>(scores.size()));
score_index_pairs.emplace_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
}
}
// Keep top k results per image.
std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend<std::pair<int, int>>);
score_index_pairs.resize(_info.keep_top_k());
// Store the new indices.
std::map<int, std::vector<int>> new_indices;
for(auto score_index_pair : score_index_pairs)
{
int label = score_index_pair.second.first;
int idx = score_index_pair.second.second;
new_indices[label].push_back(idx);
}
_all_indices[i] = new_indices;
num_to_add = _info.keep_top_k();
}
else
{
_all_indices[i] = indices;
num_to_add = num_det;
}
num_kept += num_to_add;
}
//Update the valid region of the ouput to mark the exact number of detection
_output->info()->set_valid_region(ValidRegion(Coordinates(0, 0), TensorShape(7, num_kept)));
int count = 0;
for(int i = 0; i < _num; ++i)
{
const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
for(auto &it : _all_indices[i])
{
const int label = it.first;
const std::vector<float> &scores = conf_scores.find(label)->second;
const int loc_label = _info.share_location() ? -1 : label;
if(conf_scores.find(label) == conf_scores.end() || decode_bboxes.find(loc_label) == decode_bboxes.end())
{
// Either if there are no confidence predictions
// or there are no location predictions for current label.
ARM_COMPUTE_ERROR("Could not find predictions for the label %d.", label);
}
const std::vector<BBox> &bboxes = decode_bboxes.find(loc_label)->second;
const std::vector<int> &indices = it.second;
for(auto idx : indices)
{
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7)))) = i;
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 1)))) = label;
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 2)))) = scores[idx];
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 3)))) = bboxes[idx][0];
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 4)))) = bboxes[idx][1];
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 5)))) = bboxes[idx][2];
*(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 6)))) = bboxes[idx][3];
++count;
}
}
}
}
} // namespace arm_compute