blob: 36a120e4ef1315d2da12712d8e24b119bc7bbfa5 [file] [log] [blame]
/*
* Copyright (c) 2019 ARM Limited.
*
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "arm_compute/runtime/CL/functions/CLGEMMDeconvolutionLayer.h"
#include "arm_compute/core/Helpers.h"
#include "arm_compute/core/Validate.h"
#include "arm_compute/core/utils/misc/ShapeCalculator.h"
#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
#include "arm_compute/runtime/CL/CLScheduler.h"
#include "utils/TypePrinter.h"
#include <memory>
#include <tuple>
namespace arm_compute
{
namespace
{
std::pair<Coordinates, Coordinates> compute_start_end_slice_coordinates(const ITensorInfo &output_info, const PadStrideInfo &deconv_info, bool is_nchw)
{
Coordinates start;
Coordinates end;
if(is_nchw)
{
start.set(0, deconv_info.pad_left());
start.set(1, deconv_info.pad_top());
end.set(0, output_info.dimension(0) - deconv_info.pad_right());
end.set(1, output_info.dimension(1) - deconv_info.pad_bottom());
}
else
{
start.set(0, 0);
start.set(1, deconv_info.pad_left());
start.set(2, deconv_info.pad_top());
end.set(0, output_info.dimension(0));
end.set(1, output_info.dimension(1) - deconv_info.pad_right());
end.set(2, output_info.dimension(2) - deconv_info.pad_bottom());
}
return { start, end };
}
} // namespace
CLGEMMDeconvolutionLayer::CLGEMMDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
: _memory_group(std::move(memory_manager)),
_mm_gemm(),
_mm_gemmlowp(),
_gemmlowp_output_stage(),
_permute_input_to_nhwc(),
_permute_weights_to_nhwc(),
_reshape_weights(),
_transpose_weights(),
_deconv_reshape(),
_slice_gemm(),
_gemmlowp_final(),
_reshaped_weights(),
_reshaped_weights_t(),
_permuted_input(),
_permuted_weights(),
_gemm_output(),
_slice_gemm_input(),
_original_weights(),
_is_prepared(false),
_padded_input(false),
_is_nchw(false),
_is_quantized(false)
{
}
Status CLGEMMDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, const ITensorInfo *output, const PadStrideInfo &deconv_info)
{
ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32, DataType::F16, DataType::QASYMM8);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
DataLayout data_layout = input->data_layout();
const bool padded_input = deconv_info.pad_bottom() > 0 || deconv_info.pad_left() > 0 || deconv_info.pad_right() > 0 || deconv_info.pad_top() > 0;
const bool is_nchw = input->data_layout() == DataLayout::NCHW;
const bool is_quantized = is_data_type_quantized_asymmetric(input->data_type());
const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
const size_t idx_b = get_data_layout_dimension_index(data_layout, DataLayoutDimension::BATCHES);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != deconv_info.stride().first);
ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_h) != deconv_info.stride().second);
TensorShape nhwc_weights_shape = weights->tensor_shape();
TensorShape nhwc_input_shape = input->tensor_shape();
if(is_nchw)
{
permute(nhwc_weights_shape, PermutationVector(2, 0, 1));
permute(nhwc_input_shape, PermutationVector(2, 0, 1));
TensorInfo nhwc_input_info = input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(nhwc_input_shape).set_data_layout(DataLayout::NCHW);
TensorInfo nhwc_weights_info = weights->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(nhwc_weights_shape).set_data_layout(DataLayout::NCHW);
CLPermute::validate(weights, &nhwc_weights_info, PermutationVector(2, 0, 1));
CLPermute::validate(input, &nhwc_input_info, PermutationVector(2, 0, 1));
}
const TensorShape reshaped_shape = TensorShape(nhwc_weights_shape[0], nhwc_weights_shape[1] * nhwc_weights_shape[2] * nhwc_weights_shape[3]);
const TensorInfo reshaped_info = weights->clone()->set_tensor_shape(reshaped_shape).set_data_layout(DataLayout::NCHW).set_is_resizable(true);
ARM_COMPUTE_RETURN_ON_ERROR(CLReshapeLayer::validate(weights, &reshaped_info));
TensorShape transposed_shape(reshaped_shape[1], reshaped_shape[0]);
const TensorInfo reshaped_t_info = reshaped_info.clone()->set_is_resizable(true).set_tensor_shape(transposed_shape);
ARM_COMPUTE_RETURN_ON_ERROR(CLTranspose::validate(&reshaped_info, &reshaped_t_info));
TensorShape gemm_output_shape(weights->dimension(idx_w) * weights->dimension(idx_h) * weights->dimension(idx_b),
input->dimension(idx_w),
input->dimension(idx_h),
input->dimension(idx_b));
TensorInfo gemm_output_info = reshaped_t_info.clone()->set_tensor_shape(gemm_output_shape).set_is_resizable(true);
GEMMInfo gemm_info(false, false, true, input->dimension(idx_h), true);
if(is_quantized)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpMatrixMultiplyCore::validate(&input->clone()->set_tensor_shape(nhwc_input_shape), &reshaped_t_info, nullptr, &gemm_output_info.set_data_type(DataType::S32),
gemm_info));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input->clone()->set_tensor_shape(nhwc_input_shape).set_is_resizable(true), &reshaped_t_info, nullptr, &gemm_output_info, 1.0f, 0.0f, gemm_info));
}
auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h),
0, 0, deconv_info.stride().first, deconv_info.stride().second);
const TensorShape deconv_shape = misc::shape_calculator::compute_deconvolution_output_shape(out_dims, *input, *weights);
TensorInfo col2im_output_info = gemm_output_info.clone()->set_tensor_shape(deconv_shape).set_is_resizable(true);
if(padded_input && is_quantized)
{
const auto start_end = compute_start_end_slice_coordinates(col2im_output_info, deconv_info, is_nchw);
ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionReshapeOutputKernel::validate(&gemm_output_info, bias, &col2im_output_info, input, weights, deconv_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&col2im_output_info, nullptr,
&col2im_output_info.clone()->set_is_resizable(true).set_data_type(DataType::QASYMM8)));
ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&col2im_output_info.clone()->set_is_resizable(true).set_data_type(DataType::QASYMM8), output, start_end.first, start_end.second));
}
else if(padded_input)
{
const auto start_end = compute_start_end_slice_coordinates(col2im_output_info, deconv_info, is_nchw);
ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionReshapeOutputKernel::validate(&gemm_output_info, bias, &col2im_output_info, input, weights, deconv_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLSlice::validate(&col2im_output_info, output, start_end.first, start_end.second));
}
else if(is_quantized)
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionReshapeOutputKernel::validate(&gemm_output_info, bias, &col2im_output_info, input, weights, deconv_info));
ARM_COMPUTE_RETURN_ON_ERROR(CLGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint::validate(&col2im_output_info, nullptr, output));
}
else
{
ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionReshapeOutputKernel::validate(&gemm_output_info, bias, output, input, weights, deconv_info));
}
return Status{};
}
void CLGEMMDeconvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &deconv_info)
{
ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
ARM_COMPUTE_ERROR_THROW_ON(CLGEMMDeconvolutionLayer::validate(input->info(),
weights->info(),
bias != nullptr ? bias->info() : nullptr,
output->info(),
deconv_info));
_original_weights = weights;
_padded_input = deconv_info.pad_bottom() > 0 || deconv_info.pad_left() > 0 || deconv_info.pad_right() > 0 || deconv_info.pad_top() > 0;
_is_nchw = input->info()->data_layout() == DataLayout::NCHW;
_is_quantized = is_data_type_quantized_asymmetric(input->info()->data_type());
const ICLTensor *input_to_use = input;
const ICLTensor *weights_to_use = weights;
// If the data layout is NCHW, transform everything in NHWC. Another alternative could be to
// do an outer product in NCHW and then an accumulation through a reduction. This would have two
// drawbacks: first, the outer product is less efficient than a full GEMM. Second, the reduction
// might be slower than GEMM.
if(_is_nchw)
{
_memory_group.manage(&_permuted_input);
_permute_input_to_nhwc.configure(input, &_permuted_input, PermutationVector(2U, 0U, 1U));
_permute_weights_to_nhwc.configure(weights, &_permuted_weights, PermutationVector(2U, 0U, 1U));
input_to_use = &_permuted_input;
weights_to_use = &_permuted_weights;
}
// Reshape the input weights. The weights will be reshaped only once during the call to prepare()
_reshaped_weights.allocator()->init(TensorInfo(TensorShape(weights_to_use->info()->dimension(0),
weights_to_use->info()->dimension(1) * weights_to_use->info()->dimension(2) * weights_to_use->info()->dimension(3)),
1,
input->info()->data_type(), weights->info()->quantization_info()));
_reshape_weights.configure(weights_to_use, &_reshaped_weights);
_transpose_weights.configure(&_reshaped_weights, &_reshaped_weights_t);
const size_t idx_h = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
GEMMInfo gemm_info(false, false, true, input->info()->dimension(idx_h), true);
// Configure output stage for asymmetric quantized types
if(_is_quantized)
{
_mm_gemmlowp.configure(input_to_use, &_reshaped_weights_t, nullptr, &_gemm_output, gemm_info);
}
else
{
_mm_gemm.configure(input_to_use, &_reshaped_weights_t, nullptr, &_gemm_output, 1.f, 0.0f, gemm_info);
}
if(_is_nchw)
{
_permuted_input.allocator()->allocate();
}
ICLTensor *deconv_reshape_output = nullptr;
ICLTensor *slice_output = nullptr;
ICLTensor *output_stage_output = nullptr;
if(_padded_input && _is_quantized)
{
_memory_group.manage(&_slice_gemm_input);
_memory_group.manage(&_gemmlowp_final);
deconv_reshape_output = &_gemmlowp_final;
output_stage_output = &_slice_gemm_input;
slice_output = output;
}
else if(_padded_input)
{
_memory_group.manage(&_slice_gemm_input);
deconv_reshape_output = &_slice_gemm_input;
slice_output = output;
}
else if(_is_quantized)
{
_memory_group.manage(&_gemmlowp_final);
deconv_reshape_output = &_gemmlowp_final;
output_stage_output = output;
}
else
{
deconv_reshape_output = output;
}
// Configure a Col2Im call to reshape the output of GEMM
_deconv_reshape.configure(&_gemm_output, bias, deconv_reshape_output, input->info(), weights->info(), deconv_info);
_gemm_output.allocator()->allocate();
if(_is_quantized)
{
const UniformQuantizationInfo iq_info = input->info()->quantization_info().uniform();
const UniformQuantizationInfo wq_info = weights->info()->quantization_info().uniform();
const UniformQuantizationInfo oq_info = _gemmlowp_final.info()->quantization_info().uniform();
float multiplier = iq_info.scale * wq_info.scale / oq_info.scale;
int output_multiplier(0);
int output_shift(0);
quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
_gemmlowp_output_stage.configure(&_gemmlowp_final, nullptr, output_stage_output, output_multiplier, output_shift, oq_info.offset);
_gemmlowp_final.allocator()->allocate();
}
// If the input was padded, the output needs to be sliced.
if(_padded_input)
{
const auto start_end = compute_start_end_slice_coordinates(*deconv_reshape_output->info(), deconv_info, _is_nchw);
_slice_gemm.configure(&_slice_gemm_input, slice_output, start_end.first, start_end.second);
_slice_gemm_input.allocator()->allocate();
}
}
void CLGEMMDeconvolutionLayer::run()
{
prepare();
MemoryGroupResourceScope scope_mg(_memory_group);
if(_is_nchw)
{
_permute_input_to_nhwc.run();
}
if(_is_quantized)
{
_mm_gemmlowp.run();
}
else
{
_mm_gemm.run();
}
CLScheduler::get().enqueue(_deconv_reshape, false);
if(_is_quantized)
{
_gemmlowp_output_stage.run();
}
if(_padded_input)
{
_slice_gemm.run();
}
}
void CLGEMMDeconvolutionLayer::prepare()
{
if(!_is_prepared)
{
ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
if(_is_nchw)
{
_permuted_weights.allocator()->allocate();
_permute_weights_to_nhwc.run();
}
_reshaped_weights.allocator()->allocate();
_reshape_weights.run();
if(_is_nchw)
{
_permuted_weights.allocator()->free();
}
_reshaped_weights_t.allocator()->allocate();
_transpose_weights.run();
// Prepare gemm
if(!_is_quantized)
{
_mm_gemm.prepare();
}
else
{
_mm_gemmlowp.prepare();
}
// Free resources
if(!_reshaped_weights_t.is_used())
{
_reshaped_weights_t.allocator()->free();
}
_original_weights->mark_as_unused();
_is_prepared = true;
}
}
} // namespace arm_compute